

Additional Information for Series III Operating System Users

1-8

J.6 Series III - Specific Compiler Controls

This appendix includes a fold-out page for system-specific examples of most of the
FORTRAN-86 compiler controls. This page is designed to be opened out and used in
conjunction with the corresponding text in Chapter 10.

J.7 Interrupt Handling on the Series III

The Intellec Series III maps the eight Multibus interrupt lines (INTO through INT7)
onto interrupt vector entries numbered 56 through 63; therefore, your application
may not use these for software interrupts. Interrupt vector entries available for user
software include 64 through 183. Refer to the Inte/lec Series III Microcomputer
Development System Programmer's Reference Manual for details.

J.7.1 8087 Support

You may incorporate an 8087 Numeric Data Processor in your Series III by install­
ing the iSBC 337 Multimodule Numeric Data Processor. Refer to the iSBC 337
Multimodule Numeric Data Processor Hardware Reference Manual (142887) for
more information. You must also incorporate in your application a software
procedure that helps handle 8087 interrupts.

When the iSBC 337 Multimodule NDP is installed in a Series III, the interrupt out­
put of the 8087 (lNT) is connected to the IR7 pin of the 8259A Programmable Inter­
rupt Controller, which associates the 8087 interrupt with interrupt type number 63.
The run-time system, however, expects the 8087 interrupt to arrive at interrupt
number 16. To translate from interrupt 63 to interrupt 16, you must link to your
applications programs an interrupt procedure such as the one shown in figure J -1.

If necessary, the run-time system writes, at entry 16 of the system interrupt vector,
the address of the interrupt procedure that is to process 8087 interrupts. To find the
location of that interrupt procedure, the run-time system calls a procedure of the
form

TQ$WHERES$TRAP87:
PROCEDURE (handLerptrptr) WORD REENTRANT PUBLIC;
DECLARE handLerptrptr POINTER;

END;

The parameter handlerptrptr points to a four-byte area where
TQ$WHERES$TRAP87 stores a long pointer. This pointer contains the address of
the procedure that handles the 8087 interrupts. If TQ$WHERES$TRAP87 returns a
zero handlerptrptr is undefined.

The WORD returned by TQ$WHERES$TRAP87 contains either the value 16,
which is the number of the interrupt vector entry associated with the 8087, or zero,
which indicates that the operating system has already set up an interrupt procedure
for handling 8087 interrupts.

The default version of TQ$WHERES$TRAP87 in the run-time libraries returns a
value of zero. However, the Series III Operating System does not initialize the inter­
rupt vector for 8087 interrupt handling. You must supply a version of
TQ$WHERES$TRAP87 (similar to that in J.l) that associates interrupt 16 with an
8087 interrupt procedure.

FORTRAN-86

FORTRAN-86 Additional Information for Series III Operating System Users

SERIES-III FORTRAN-S6, V2.0

Source File: :F1:S1II87.SRC
Object File: :F1 :SIIIS7 .OBJ
Controls Specified: <none>.

STHT LINE NESTING
1 1 a a

2 20
3 21
4 22

24
25

28

30

9 32
9 33

10 34
11 35
12 36

13 38
14 39
15 40

16 48

16 50

17 52
18 53
19 54

20 56

21 62

22 66
23 67

Summary Information:

PROCEDURE
TQVHEIIESTRAPS7
HY8087TRAP
-CONST III CODE-

Total

67 Lines Read.
o Errors Detected.

SOURCE TEXT: :F1 :SIIIS7 .SRC
(. In order to use the 80S7 with the Series-III, you must supply
an interrupt handler to field the hardware interrupt generated
by the SOS7 -> S259A. On the Series-III board, the iSBC-337
multi-module connects the S087 interrupt to level 7 on the on-board
8259A. The Series-III initialization sequence maps the S259A
interrupts to interrupt numbers 56 to 63, so level 7 is at
interrupt 63.

An interrupt handler for level 63 is supplied which clears the
8259A to allow it to accept subsequent S087 interrupts, and
also enables the SOS6 interrupt mask disabled (by the hardware) at
entry to the interrupt handler. This combination must be done before
invoking the "common" numeric trap handler (common to both the
hardware S087 and the software emulator), SO that the trap
handler can use the S087. Otherwise, if an 80S7 exception occurred
in the trap handler, the processor would hang up; since
either the 8259A or the S086 would hold the 8087 interrupt pending. *)

MODULE HYSIIISOS7CONFIG;
PUBLIC MYSIII8087CONFIG;

TYPE ARBPTR = AINTEGER; (* Actually a pointer to the trap routine. *)
FUNCTION TQVheresTrap87(VAR TrapHandlerAddress: ARBPTR): VORD;

PUBLIC UTS;
$INTERRUPT CTQ TRAP87)

PROCEDURE TQ_TRAPS7;

PRIVATE HYSIII80S7CONFIG;

$INTERRUPT(Hy8087Trap=63)
PROCEDURE Hy8087Trap;
BEGIN

OUTBYT (OCOH, 20H); (* Send End Of Interrupt to 8259A .)
EnableInterrupts; (* Allow S086 interrupts to be accepted .•)
Causelnterrupt(16); (* Transfer to "common" 80S7 trap handler *)

END;

FUNCTION TQVheresTrapS7(VAR TrapHandlerAddress: ARBPTR): VORD;
TYPE Interrupts = (IRO, IR1, lR2, IR3, IR4, IR5, IR6, IR7);

VAR

BEGIN

(* Define a SET containing 8 elements, one for each interrupt
level on the 8259A. Pascal-86 will map this set to a byte,
with elements mapped to bits right-to-Ieft in the
byte. This allows us to use SET operations
to enable level 7, where the 8087 is attached on the
SBC 86/12A board .•)

InterruptHask: SET OF Interrupts;

c· Clear the leftmost bit CIR7), to enable level 7 ••)
DisableInterrupts;
INBYT(OC2H, InterruptHask);
OUTBYTCOC2H, InterruptHask • [IRO •• IR6]);
EnableInterrupts;

(* Set up interrupt level 16 as the 80S7 interrupt handler.
This is done in this routine, with the Setlnterrupt procedure,
so that we don't have to pass back the address of TQ Trap87,
since this is difficult to do in Pascal. *) -

SetlnterruptC16, TQ_Trap87);

C· Return value indicates to the run-time system which interrUpt
table entry must be initialized. If set to zero, this indicates
that no entry is to be initialized ••)

TQVheresTrap87 := 0;
END;

OFFSET
0024H
OOOOH

CODE SIZE
003FH 63D
0024H 360
OOOOH 00

DATA SIZE STACK SIZE
0014H 200
0026H 3SD

0063H 99D OOOOH OD 003AH 580

43' Utilization of Hemory.

Figure J -1. Series III 8087 Interrupt Initialization

1-9

Additional Information for Series III Operating System Users

1-10

Intel provides an interrupt procedure (with the PUBLIC identifier TQ_ TRAP87)
that fields 8087 interrupts and calls the current exception handler. You may use the
address of TQ_ TRAP87 in your own version of TQ$WHERES$TRAP87. Link
your version of TQ$WHERES$TRAP87 before the run-time libraries, so that the
linker fetches your version in place of the default version. Figure 1-1 shows an exam­
ple of a TQ$WHERES$TRAP87 procedure written in Pascal-86 that uses the
address of TQ_ TRAP87.

This procedure is supplied as SIl187.0Bl on the release diskette. To use it, you must
link it in before the run-tim~ libraries. For example:

>
>

RUN LINK86 MYMOD1.0BJ, MYMOD2.0BJ, SIII87.0BJ, & <cr>
F86RNO.LIB, F86RN1. LIB, F86RN2.LIB, F86RN3.LIB, & <cr>
F86RN4.LIB, 8087.LIB, LARGE. LIB to MYPROG.86 BIND <cr>

NOTE
1 he Series III Operating System is designed for use by a single operator and
supports neither reentrancy nor multitasking.

J.8 Related Publications

Below is a list of other Intel publications you are likely to need to use
FORTRAN-86. Most of them describe related Intel products. The manual order
number for each publication is given immediately following the title.

For a list of non-Intel publications that may be useful to you, see the Bibliography at
the end of this manual.

FORTRAN-86 Pocket Reference, 121571

A companion to this manual, providing summary information for quick
reference.

A Guide to the Intellec Series III Microcomputer Development System, 121632

A guide to the use of the Series III and associated tools as a total development
solution for your iAPX 86 and iAPX 88 microcomputer applications. This
tutorial manual takes you through hands-on sessions with the Series III
operating system, the CREDIT text editor, the FORTRAN-86 compiler, the
iAPX 86, 88 Family Utilities, the DEBUG-86 applications debugger, and the
ICE-86A In-Circuit Emulator.

Intellec Series III Microcomputer Development System Product Overview,
121575

A summary description of the set of manuals that describe the Intellec Series III
development system and its supporting hardware and software. This brief
manual includes a description of each manual related to the Series III, plus a
glossary of terms used in the manuals.

Intellec Series III Microcomputer Development System Console Operating
Instructions, 121609

Intellec Series III Microcomputer Development System Pocket Reference,
121610

Instructions for using the console features of the Series III, including the
DEBUG-86 applications debugger. The Console Operating Instructions pro­
vides complete instructions, and the Pocket Reference gives a summary of this
information.

FORTRAN-86

FORTRAN-86 Additional Information for Series III Operating System Users

Intellec Series III Microcomputer Development System Programmer's
Reference Manual, 121618

Instructions for calling system routines from user programs for both
microprocessor environments, MCS-80/85 and iAPX 86, in the Series III.

ISIS-II CREDIT CR T-Based Text Editor User's Guide, 9800902
CREDIT CRT-Based Text Editor Pocket Reference, 9800903

Instructions for using CREDIT, the CRT-based text editor supplied with the
Series III. The User's Guide provides complete operating instructions, and the
Pocket Reference summarizes this information for quick reference.

iAPX 86,88 Family Utilities User's Guide, 121616
iAPX 86,88 Family Utilities Pocket Reference, 121669

Instructions for using the 8087-based utility programs LINK86, LIB86, LOC86,
CREF86, and OH86 in 8086-based development environments to prepare com­
piled or assembled programs for execution. The User's Guide provides complete
operating instructions, and the Pocket Reference summarizes this information
for quick reference.

ASM86 Language Reference Manual, 121703
ASM86 Macro Assembler Operating Instructions, 121628
ASM86 Macro Assembler Pocket Reference, 121674

Instructions for using the ASM86 in 8086-based development environments.
The Language Reference Manual gives a complete description of the assembly
language; the Operating Instructions gives complete instructions for operating
the assembler; and the Pocket Reference provides summary information for
quick reference. You need these publications if you are coding some of your
routines in assembly language.

PLIM-86 User's Guide, 121636
PLIM-86 Pocket Reference, 121662
Pascal-86 User's Guide, 121540
Pascal-86 Pocket Reference, 121541

Instructions for using the PL/M and Pascal-86 languages and compilers in
iAPX 86-based development environments. The User's Guide gives a complete
description of the language and compiler (or translator), and the Pocket
Reference provides summary information for quick reference. You need these
publications if you are coding some of your programs in PL/M-86 or Pascal-86.

PSCOPE High-Level Program Debugger User's Guide, 121790

Instructions for using PSCOPE, the symbolic debugger for high-level language
programs. The User's Guide provides complete operating instructions.

ICE-86A In-Circuit Emulator Operating Instructions for ISIS-II Users, 9800714
ICE-86A Pocket Reference, 9800838
ICE-88 In-Circuit Emulator Operating Instructions for ISIS-II Users, 9800949
ICE-88 Pocket Reference, 9800950

Instructions for using the ICE-86A and ICE-88 In-Circuit Emulators for hardware
and software development. The Operating Instructions manuals give complete user
descriptions of the In-Circuit Emulators, and the Pocket Reference guides provide
summary information for quick reference. You need the corresponding publications
if you are using the ICE-86A or ICE-88 emulator.

1-11

Additional Information for Series III Operating System Users

J-12

The iAPX 86,88 User's Manual, 210201-001

This manual contains general reference information, application notes, and data
sheets describing the 8086, 8087, 8088, and 8089 microprocessors and their use.

Extensive discussions of hardware and development software (including PL/M-86,
assembly language, LINK86, and LOC86), plus numerous examples of system
designs and programs, are included.

8087 Support Library Reference Manual, 121725

This manual contains specific information on the 8087 support libraries that are
available. It includes full descriptions of the DCON87.LIB, eEL87.LIB, and
EH87.LIB, as well as a discussion of the IEEE math standard.

Run-Time Support Manual for iAPX 86,88 Applications, 121776

This manual describes in detail the run-time interface needed to run programs on the
iAPX 86,88 family of microprocessors. It includes a description of the run-time
libraries required by high-level language compilers, the concepts behind Intel's
various operating system environments, the specifications for Intel's Universal
Development Interface (UDI), and the definition of the Logical Record Interface
(LRI).

FORTRAN-86

FORTRAN-86
Additional Information for Series III Operating System Users

10.1 1/0 Examples

Example 10.1.1 Program 1A (PROG1A.FTN)

Link the program to the libraries 87NULL.LIB and LARGE. LIB.

Example 10.1.2 Program 1 B (PROG1 B.FTN)

Link the program to the libraries 87NULL.LIB and LARGE.LIB.

Example 10.1.3 Program 1C (PROG1C.FTN)

Link the program to the libraries 87NULL.LIB and LARGE.LIB.

10.2 TEMPREAL Example

Example 10.2.1 Program 2 (PROG2.FTN)

Link the program to the libraries CEL87.LIB. EH87.LIB. LARGE. LIB. and either
8087.LIB or E8087 and E8087.LIB.

10.3 $INTERRUPT Example

Example 10.3.1 Program 3 (PROG3.FTN)

Link the program to the libraries 87NULL.LIB and LARGE.LIB.

10.4 $REENTRANT Example

Example 10.4.1 Program 4 (PROG4.FTN)

Link the program to the libraries-87NULL.LIB and LARGE.LIB.

10.5 Function Subprogram Example

Example 10.S.1 Program 5 (PROGS.FTN)

Link the program to the libraries eEL87.LIB, EH87.LIB, LARGE.LIB, and either
8087.LIB or E8087 and E8087.LIB.

J-13/1-14

• C)

APPENDIX K
ADDITIONAL INFORMATION FOR

iRMX™ 86 OPERATING SYSTEM USERS

This appendix contains information that is specific to the iRMX 86 Operating
System. It covers the following areas:

• Program development environment

• Compiler invocation and file usage

• Sample link, locate, and execute operations

• Examples of FORTRAN-86 compiler invocation with an iRMX 86-based system

• Related publications

This appendix assumes that you have an iRMX 86-based system up and running,
and that you have a suitable copy of the FORTRAN-86 compiler. Chapter 1 of this
manual leads you through a complete program development sequence using a sam­
ple FORTRAN program supplied with the compiler. Details on the operating system
environment are provided in the iRMX 86 Human Interface Reference Manual.

K.1 Program Development Environment

To run the FORTRAN-86 compiler in the iRMX 86-based system, you must have
the following hardware and software:

• The iRMX 86 Human Interface (and other iRMX 86 layers necessary to support
the Human Interface)

• At least 153K of free space (RAM memory over the operating system
requirements)

• At least one mass storage device. (The product is delivered on a flexible disk;
therefore, the installation of the compiler always requires a single- or
double-density disk drive.)

A system with a printer is recommended for producing hard-copy output listings.
This system may be separate from the system used to compile programs.

K.2 Compiler Installation

Compiler installation is described in Chapter 1 of this book.

K.3 Program Disk Contents

The iRMX 86 FORTRAN-86 software package includes one double density and one
single densjty disk. Each of these disks contains the following files:

FORT86
F86RNO.LIB
F86RNl.LIB
F86RN2.LIB
F86RN3.LIB
F86RN4.LIB

RTNULL.LIB
CEL87.LIB
EH87.LIB
8087.LIB
87NULL.LIB

The file named FORT86 contains the FORTRAN-86 compiler. The files
F86RNO.LIB, F86RNl.LIB, F86RN2.LIB, F86RN3.LIB, F86RN4.LIB,
RTNULL.LIB, 8087.LIB, CEL87.LIB, EH87.LIB, and 87NULL.LIB contain the

K-l

Additional Information for iRMX 86 Operating System Users

K-2

run-time support libraries and modules. The remaining programs with the extension
.FTN are example programs described in Chapter 10 of this manual and section K.8
of this appendix.

K.4 Compiler Operation

The FORTRAN-86 compiler is a program that translates your FORTRAN instruc­
tions into object modules that can be linked and located for execution.

To create a FORTRAN program, type the instructions into a file using a text editor,
and submit the file to the FORTRAN-86 compiler. The original file is called a source
file, and the file containing the compiled program is called an object file. (The con­
tent of the object file is also known as object code.) In FORTRAN-86 you can
compile parts of a program: each separate compilation is known as an object
module.

K.4.1 Invoking the Compiler on an iRMX 86-Based System

The command line to invoke the FORTRAN-86 compiler on an iRMX 86-based
system is /

\

-dir FOR T 8 6 dir source-program-name controls < c r>

where

- is the prompt

dir is the pathname of the directory that contains the compiler

FORT86 is the name of the compiler as supplied by Intel

dir is the pathname of the directory that contains the source file

source-program-name is the name of the source file that contains the
FO R TRAN source program

controls are optional primary or general compiler controls described in
Chapter 11. When using more than one control in the invocation line, use a
space between each control.

Also, the line can be extended by using the ampersand (&) as a continuation
character to replace a space.

<cr> represents the RETURN key on the keyboard

The following is a sample invocation:

FORT86 PROGRM.FTN SYMBOLS <:r>

where

PROGRM.FTN is the name of the source file that contains the FORTRAN
source program.

SYMBOLS is a compiler control that tells the compiler to generate a symbol­
table listing of source-program identifiers in addition to the object module and
listing file.

FORTRAN-86

FORTRAN-86 Additional Information for iRMX 86 Operating System Users

The preceding sample invocation line assumes that both the compiler and the source
program reside in the default directory (:$:). You can specify different devices and
different directories, however, by prefixing the compiler name and the source file
name with additional path name components.

In the following example, the compiler resides on a device whose logical name is
:FDI:, and the source file resides on the default device in a subdirectory of the
:PROG: directory.

: FD1 :FORT86 :PROG: FTNPROGS/PROGRM.F86 SYMBOLS <cr>

Refer to the iRMX 86 Human Interface Reference Manual for more information
about the iRMX 86 file naming conventions.

K.4.2 Files Used by the Compiler

The compiler uses three kinds of files: input files, output files and work files.

K.4.2.1 Input Files

You supply the FORTRAN source program name for the source in the invocation
line previously listed. To include other source files uses the INCLUDE control, as
described in Chapter II. These files must be standard files containing the text of
FORTRAN instructions.

K.4.2.2 Output Files

Unless specific controls are used to suppress the files, the compiler produces two
output files: the object file and the listing file.

The object file contains the actual code in object module format. The system can
execute the object file after the linking and locating operations are completed (see
Chapter 14).

The listing file, or PRINT file, contains a listing of the source program and any
other printed output generated by the compiler. (The listing selection controls are
described in Chapter II.)

The listing file and the object file unless changed by the PRINT or OBJECT controls
have the same file name as the source file, but with a different extension. The listing
file has the extension LST and the object file has the extension OBJ.

If the files do not exist, the compiler creates the files - flname.LST and
flname.OBJ. If files with these names do exist and they are in the same directory as
the source file, the compiler overwrites them.

For example, if you invoke the compiler on an iRMX 86-based system with the
command

FORT86 :PROG:FTNPROGS/PROGRM <cr>

the compiler places the listing in a file with the pathname
:PROG:FTNPROGS/PROGRM.LST. It places the object module in a file with
path name :PROG:FTNPROGS/PROGRM.OBJ.

The compiler output files are described in greater detail in Chapter 13.

K-3

Additional Information for iRMX 86 Operating System Users

K-4

K.4.2.3 Work Files

The compiler creates and uses work files during its operation and deletes them upon
the completion of compilation.

During configuration of the iRMX 86 Operating System, you can select a location
for compiler work files. To do this, assign the logical name :WORK: to a device or
to a directory on a device. The compiler automatically creates its work files within
the :WORK: directory.

The :WORK: directory is the default in iRMX 86-based systems.

See Chapter 13, "Compiler Output," for more information.

K.4.3 Compiler Messages

The sign-on message for the FORTRAN-86 compiler is

iRMX 86 FORTRAN COMPILER, VLY

where

x is the version number of the compiler.

Y is the change number within the version.

When a compilation is finished, the compiler terminates with the message

m TOTAL ERRORS DETECTED

n TOTAL WARNINGS DETECTED

where

m is the total number of errors detected.

n is the total number of warnings detected.

Other iRMX 86 error messages can be found in the iRMX 86 Human Interface
Reference Manual.

K.S Linking, Locating, and Executing in an
iRMX 86-Based Environment

The linker (LINK86) links object modules and outputs a file. The locator (LOC86)
assigns absolute addresses to modules to locate them in actual memory. The
operating system loads and executes the final program. Additionally, the LIB86
utility enables you to create and maintain your own library file of compiled (or
translated) object modules for use with other programs.

A list of the software provided for building executable FORTRAN-86 programs
follows:

FORT86 - the FORT-RAN-86 compiler

F86RNO.LIB, F86RN I.LIB, F86RN2.LIB, F86RN3.LIB, F86RN4.LIB, and
RTNULL.LIB - the run-time support libraries

FORTRAN-86

FORTRAN-86 Additional Information for iRMX 86 Operating System Users

CEL87 .LIB - the floating-point intrinsic function library

EH87 .LIB - the floating-point error handler

8087.LIB - the 8087 numeric processor extension (NPX) interface library

87NULL.LIB - the support library that resolves references if no 8087 processor is
used

URXLRG.LIB - the Universal Development Interface (UDI) library

LINK86, CREF86, LOC86, LIB86, and OH86 - the 8086-based utilities

K.5.1 Sample Link Operations

The following link operation takes two object modules, MYMODl.OBJ and
MYMOD2.0BJ, links them together, then links in the FORTRAN run-time libraries
to form the output module MYPROG.86. To extend the LINK86 command to the
next line without transmitting the command, type the ampersand (&) continuation
character before the RETURN key, and continue typing the command on the next
line. The continued line will start with two asterisks (**).

The linker first reads MYMODl.OBJ and MYMOD2.0BJ for external references
and resolves those references. Then the linker attem.pts to resolve any other external
references in the modules by looking at the public symbols in the libraries
F86RNO.LIB, F86RNl.LIB, F86RN2.LIB, F86RN3.LIB, F86RN4.LIB,
87NULL.LIB, and URXLRG.LIB. Use the 87NULL.LIB when the modules do not
perform real arithmetic. The final output module is MYPROG.86. This module can
be loaded and executed in the iRMX 86 environment.

When the modules MYMODI.OBJ and MYMOD2.0BJ do perform real arithmetic,
link them with the 8087 Numeric Data Processor libraries. The LINK86 command is

K.5.2 Examples

PI +. L87.LIB, F86RNO.LI8, &
18, F86RN4.LIB, & <c r >

The following examples show how to execute FORTRAN-86 programs in different
environments:

1. To execute a FORTRAN-86 program in a full-featured operating system
environment, link in all of the FORTRAN-86 run-time support libraries. If the
application also requires support for floating-point arithmetic, link in the
appropriate numerics libraries. For example, the link sequence for the 8087
microprocessor is

By using the BIND option with LINK86, the output file is ready to be executed,
assuming that the operating system has an L TL loader.

K-5

Additional Information for iRMX 86 Operating System Users FORTRAN-86

K-6

2. To execute a FORTRAN-86 program and produce code for a bare machine (or
minimal operating system) environment link in the run-time libraries
F86RNO.LIB, F86RNl.LIB, and F86RN2.LIB. If the program requires
numerics support and you are using the 8087 chip, the link command is

In this example, string and 32-bit integer operations are fully supported.
FORTRAN input/output is not supported; if used, LINK86 will generate an
UNRESOLVED EXTERNALS warning.

When linking in numerics support and an 8087 exception occurs, RTNULL.LIB
will simply execute a HL T instruction. Since there are no external references
between RTNULL.LIB and EH87.LIB, the exception handler will never be
called. Consequently, it should not be included in the link sequence.

Note that the BIND option was not used. In this environment the programs will
usually be located and burned into ROM, or loaded with a simple absolute
loader.

3. This example links a program using internal I/O only.

*
OG.OBJ, F86R
, RTNULL. LIB, • IB, F86RN1.LIB

NULL.LIB, TO M

4. This example does only internal 110 and floating point arithmetic.

LINK86 MYPROG.OBJ, CEL8?LIB, F86RNO.LIB, F86R~1 .~IB, F86RN2.LIB, &
* R"NULL.LIB, 87ERH.LIB, E808?, E8087.LIB TO MYPRGS.86 BIND <cr>

K.6 Locating Object Modules

Chapter 14 discusses object module location. To locate, load, and execute a module
in an iRMX 86 environment, you must reserve memory during the iRMX 86 con­
figuration process. If the memory is not reserved, the operating system will assign
the memory to other tasks as dynamic memory.

The following is a sample locate operation using the default settings for controls:

LOC86 SAMPL1.LNK<cr>

This sample locate operation binds the logical segments of SAMPLl.LNK to
addresses beginning at the default 00200H (hexadecimal). The output module is
called SAMPLI (the root name of the input module without the LNK extension).
Unless specified with a TO clause, the output module (the absolutely located
program) will always have the same root name as the input module.

The following sample operation locates a program using the ORDER and
ADDRESSES control:

In the invocation line, use the ampersand character (&) to continue a long line
without executing it.

FORTRAN-86 Additional Information foriRMX 86 Operating System Users

This sample locate operation collected the logical segments by class names in the
order specified in the ORDER control. The locator then assigned addresses specified
in the ADDRESSES control to the logical segments collected into the CODE and
STACK classes. The DATA class received its address assignment for the default
algorithm.

K.7 Preconnecting Files

When running a program on an iRMX 86-based system you can also use the UNIT
control to override the default preconnections. The format of the UNIT control in
an iRMX 86-based system is

source (UNITn = path)

where

source is the pathname of your relocated object code.

n is a number between 0 and 255.

path is a logical name or pathname for a file or device.

Chapter 14 discusses preconnecting files in more detail.

K.8 Executing Programs in an iRMX 86 Environment

To execute a complete program in an iRMX 86 environment, enter the pathname of
the program file. For example, the following command locates and executes a file
namedPROG:

PROG.86<cr>

Since the iRMX 86 Operating System searches several directories for files to execute,
PROG could reside in the default directory (:$:), the program directory (:PROG:),
or some other directory. The directories searched and the order of search are
\RMX 86 configuration parameters. However, if you are unsure, enter the complete
pathname. For example, the following command:

:PROG:PROGRM

loads and executes the file PROGRM residing in the :PROG: directory.

K.9 iRMX-86 - Specific Examples

The last page of this appendix (the fold-out) lists the run-time libraries needed to
execute the examples found in Chapter 10 on an iRMX 86-based system.

K.10 Related Publications

For information on the iRMX 86 operating system, see the following manuals:

iRMX 86 Human Interface Reference Manual, 9803202

iRMX 86 Nucleus Reference Manual, 9803122

EDIT Reference Manual, 143587

K-7

FORTRAN-86 Additional Information for iRMX Operating System Users

10. 1 I/O Examples

Example 10.1. 1 Program 1 A (PROG 1 J~.FTN)

Link the program to the libraries 87NULL.LIB and LRG.LIB.

Example 10.1.2 Program 18 (PROG1B.FTN)

Link the program to the libraries 87NULL.LIB and LRG.LIB.

Example 10.1.3. Program 1C (PROG1C.FTN)

Link the program to the libraries 87NULL.LIB and LRG.LIB.

10.2 TEMPREAL Example

Example 10.2.1 Program 2 (PROG2.F'TN)

Link the program to the libraries CEL87.LIB, EH87.LIB, 8087.LIB, and LRG.LIB.

10.3 $INTERRUPT Example

Example 10.3.1 Program 3 (PROG3.FTN)

Do not execute this program on an iRMX 86 Operating System. The iRMX 86
Operating System implements its own form of interrupt processing. All programs
that run in an iRMX 86 e~nvironment must use iRMX 86 system calls to set up
interrupt processing routines.

10.4 $REEN'TRANlr Example

Example 10.4. 1 Program 4 (PROG4"FTN)

Link the program to the libraries 87NULL.LIB and LRG.LIB.

10.5 Function Subprogram Exa,mple

Example 10.5.1 Program 5 (PROG5.IFTN)

Link the program to the libraries CEL87.LIB, EH87.LIB, 8087.LIB, and LRG.LIB.

K-9/K-IO

070 VAL function, 6-23, H-2, H-5
8087 control intrinsics, 6-18
8087 control word, 6-18
8087.LIB, 14-2, 14-3, J-l, K-l
8087 status word format, 6-18
87EH.LIB, 14-2, 14-3, J-l, K-l
87NULL.LIB, 14-2, 14-3, J-l, K-l

ABS, 6-9
absolute value, 6-9
access method specifier, 9-4, 9-5
ACOS, 6-14, 6-15
actual argument, 6-1, 6-21, 7-1, 8-6
actual array declarator, 5-9
addition, 7-1
A descriptor, 9-17
adjustable array declarator, 5-8
AINT,6-7
ALOG,6-13
ALOG 10, 6-14
alphanumeric editing, 9-17
alternate record termination descriptor, 9-18
AMAXO, 6-1, 6-11
AMAXl, 6-1, 6-11
AMINO, 6-1, 6-11, 6-12
AMINI, 6-1, 6-11
AMOD,6-8
.AND., 7-4
ANINT,6-7
ANSI FORTRAN 77,1-1
ANS 1978 standard, A-I, A-2
apostrophe edit descriptor, 9-18
apostrophe editing, 9-18
arccosine, 6-15
arcsine, 6-15
arctangent, 6-15
argument, 6-1, H-2
arithmetic assignment statement, 2-1, 8-1
arithmetic expressions, 7-1 thru 7-3
arithmetic functions, 6-13
arithmetic IF statement, 2-1, 8-5
arithmetic operators, 7-1, D-9
arithmetic relational expressions, 7-4
array, 5-7 thru 5-10, H-5
array declarator, 5-8, 5-9
array element, 5-9, 5-10
array element name, 5-10
array name, 5-8
array properties, 5-9
ASCII character set, 5-6
ASCII collating sequence, 6-6, 6-17, 7-4, 13-2, E-l
ASIN, 6-14, 6-15
ASSIGN statement, 2-1,8-7,9-10, D-l
assigned GO TO statement, 2-1, 8-8
assignment statements, 8-1, D-l
assumed-size array declarator, 5-8
ATAN, 6-14,6-15
ATAN2, 6-14,6-16
Aw descriptor, 9-14, 9-17

INDEX I

BACKSPACE statement, 2-1, 9-8, 0-1
base specifier, 5-2
B descriptor, 9-14, 9-17
binary base specifier, 5-2 ,
bitwise Boolean operations, 7-i, 7-6
blank common block, 5-12
blank descriptor, 9-18
blank specifier, 9-3, 9-14,9-17,9-20
BLOCK DATA statement, 2-1, 2-2,4-2, D-l
BLOCK DATA subprogram, 2-1,5-12,6-23, 12-1
block IF, 8-2
block IF statement, 2-1, 8-4
BN editing, 9-20
Bw descriptor, 9-14
BZ editing, 9-20

CALL statement, 2-1, 6-2,8-6, D-2
calling conventions, H-l, H-2
calling sequence, H-2 thru H-6
carriage control specifier, 9-3, 9-6,9-21
CEL.LIB, 14-2, 14-3, J-l, K-l
CHAR, 6-5, 6-6
character assignment statement, 2-1, 8-2
character constants, 5-6
character data, 5-6, H-4, H-5
CHARACTER data type, 4-1
character expressions, 7-1, 7-3
character relational expressions,7-4
character set, 3-1, E-l
CHARACTER statement, 2-2, 5-6, D-2
character storage unit, 0-1
character substring, 5-10, 5-11
check exceptions, 15-20
choosing largest or smallest value functions, 5-13,6-11
CLOSE statement, 2-1, 9-7, D-2
COOE control, 11-3 thru 11-5, 13-1, 13-2
comments, 4-1, 12-1,0-2
common block, 5-12, 6-23
common logarithm, 6-14
COMMON statement, 2-2, 5-8, 5-12,6-1,6-23,0-2
compilation summary, 13-1, 13-3, 13-4
compiler capacity, C-l
compiler controls, 1-1, 11-1, 11-2
compiler error messages, 15-1 thru 15-11
compiler failure error messages, 15-11
compiler installation, 1-3, J-l, K-l
compiler invocation, J-2, J-3, K-2, K-3
compiler messages, 12-2
compiler output, 13-1
computed GO TO statement, 2-1, 8-7
concatenation, 7-3
connected unit, 9-2, 9-6, 9-7
console input device, 9-2
console output device, 9-2

Index-l

Index

constant array declarator, 5-8
constants, 3-1
continuation line, 3-2
CONTINUE statement, 2-1, 8-6, D-2
control abbreviations, 11-2
control status controls, 11-1
COS, 6-14, 6-15
COSH, 6-16
cosine, 6-15

DABS, 6-9
DACOS, 6-14, 6-15
DASIN, 6-14, 6-15
data length, 5-1
DATA statement, 2-2, 5-12, 5-13,6-1, 6-22, 0-3
data transfer statements, 9-23
data transfer 110 statements, 9-9
data types, 5-1, H-3 thru H-6
DATAN, 6-14, 6-15
DATAN2, 6-14, 6-16
DBLE, 6-5, 6-6
DCOS, 6-14, 6-15
DCOSH,6-16
D descriptor editing, 9-15
DDIM, 6-9,6-10
DEBUG control, 11-4, 11-6
decimal base specifier, 5-2
default data length, 11-21
default typing convention, 5-1, 5-7
denormalized numbers, 7-7
denormalized operand, 15-23
device drivers, 1-2, 1-3, 1-2
DEXP,6-13
DIM, 6-9, 6-10
dimension declarator, 5-8
dimension declarator size, 5-9
DIMENSION statement, 2-2, 5-8, 6-23, D-3
DINT,6-7
direct access file, 9-1
disconnected unit, 9-2
division, 7-1
division by zero, 7-2
DLOG,6-13
DLOG1O, 6-13,6-14
DMAXl, 6-1, 6-11
DMINl, 6-1,6-11,6-12
DMOD,6-8
DNINT,6-7
D066 control, 11-7
D077 control, 11-7
DO loop, 8-5, 11-7
DO statement, 2-1, 8-5, D-3
dollar sign editing, 9-21
DOUBLE PRECISION data type, 4-1, 5-3
double-precision product, 6-9,6-10
DOUBLE PRECISION statement, 2-2, 5-4, D-3
DPROO, 6-9, 6-10
DQRT,6-13
DRINT,6-7

Index-2

DRMO,6-8
DSIGN,6-9
DSIN, 6-14,6-15
DSINH,6-16
DSQRT,6-13
DTAN, 6-14, 6-15
DTANH,6-16

FORTRAN-86

dummy argument, 3-2,4-1,5-9,6-1,6-21,8-6
Dw.d descriptor, 9-14, 9-15

E8087,1-3
E8087.LIB, 1-3, 14-2
E descriptor editing, 9-15
edit descriptor, 9-13
EJECT control, 11-4, 11-8, 13-1
ELSE statement, 2-1, 8-4, D-3
ELSE IF statement, 2-1,8-4, D-3
END IF statement, 2-1, 8-4, D-4
ENDFILE statement, 2-1, 9-9, D-4
end-of -file specifier, 9-9, 9-11
END statement, 2-1,4-2, D-4
.EQ., 7-3
EQUIVALENCE statement, 2-2, 5-8, 5-11,5-12,6-1, 6-22,

D-4
.EQV., 7-4
error format, 15-1
error message listing, 13-3
error specifier, 9-3, 9-4, 9-7, 9-9, 9-11, 9-12
ERRORLIMIT control, 11-9
Ew .d -descriptor, 9-15, 9-17
Ew.dEe descriptor, 9-14, 9-15
examples, 10-1
executable statements, 2-1, 8-1
EXP, 6-13
exponentiation, 7-1
expressions, 7-1
external files, 9-1, 9-21
external procedure, 2-1
EXTERNAL statement, 2-2, 5-14, D-4
external unit specifier, 9-8

F86RNO.LIB, 14-2, 14-3, J-l, K-l
F86RNl.LIB, 14-2, 14-3, J-l, K-l
F86RN2.LIB, 14-2, 14-3, J-l, K-l
F86RN3.LIB, 14-2, 14-3, J-l, K-l
F86RN4.LIB, 14-2, 14-3, J-l, K-l
F descriptor editing, 9-15
file, 9-1
file handling statements, 9-2 thtu 9-9
file disposition specifier, 9-7 .
file name specifier, 9-3, 9-4
file pointer: 9-8
file preconnection, 14-4, 14-5
file status specifier, 9-3, 9-4
FLOAT, 6-1, 6-4
floating-point 8087 exceptions, 15-20, 15-21
floating-point constants, 5-3
floating-point data, 5-3, H-3
floating-point error handler, 1-5, K-5
floating-point exceptions, 7-2
floating-point exponent, 5-3

FORTRAN-86

floating-point function exceptions, 15-20, 15-21
floating-point value ranges, 5-4
format identifier, 9-13
format specifier, 9-9, 9-10, 9-12
FORMAT statement, 2-2, 9-10, 9-13, D-5
formatted data transfer, 9-13
formatted record, 9-1
formatting specifier, 9-3, 9-5
FORT86.86, 14-2, 14-3, J-2, K-2
FORTRAN 77 extensions, A-I
FORTRAN-80, A-I
FREEFORM control, 3-3, 11-10, 12-1
freeform input, 9-21
freeform output, 9-21
function, 6-1, 6-2, 8-6, 11-20
FUNCTION statement, 2-1, 2-2, 4-1, D-5
FUNCTION subprogram, 2-1,5-12,6-2, 12-1
Fw.d descriptor, 9-14, 9-15

G descriptor editing, 9-16
.GE., 7-3
general controls, 11-2, 11-11
generic name, 6-3
global data, 4-2
global symbolic name, 3-2
GOTO statements, 8-7, D-5
.GT., 7-3
Gw.d descriptor, 9-16
Gw.d[Ee] descriptor, 9-14,9-16

H descriptor editing, 9-19
hardware environment, 1-2
headings, 4-1
hexadecimal base specifier, 5-2
Hollerith constants, F-l
Hollerith data, 5-6
Hollerith data type, F-l
Hollerith edit descriptor, 9-19
Hollerith format specification, F-2
Hollerith string descriptor, 9-18
hyperbolic cosine, 6-16
hyperbolic functions, 6-16, 6-17
hyperbolic sine, 6-16
hyperbolic tangent, 6-17

lABS, 6-9
ICHAR, 6-1, 6-5, 6-6
IDIM, 6-9, 6-10
IDINT,6-4
IDNINT, 6-7
IDRINT, 6-7
IF statements, 8-2, D-5
IFIX, 6-1, 6-4
IGNORE control, 11-11
IMPLICIT statement, 2-2,5-1,5-7,6-23, D-6
implicit type conversions, 6-22
implied-DO, 5-13, 9-12
INDEX, 6-12
INCLUDE control, 11-3, 11-12, 13-2
index value of a DO loop, 8-5
inexact result, 7-2
infinity arithmetic, 7-8
initial line, 3-3
initial primary controls, 11-1
INPUT,6-2

input and output statements, 9-1
input files, 12-1
input format controls, 11-2
INT, 6-1, 6-4,6-5
INTI, 6-1, 6-4,6-5
INT2, 6-1, 6-4, 6-5
INT4, 6-1, 6-4, 6-5
integer constants, 5-2
integer data, 5-1
INTEGER data type, 4-1, H-3
INTEGER editing, 9-15
integer exceptions, 15-20
INTEGER overflow, 7-2
INTEGER statement, 2-2, 5-2, D-6
integer value ranges, 5-2
internal file, 9-2
INTERRUPT control, 5-12, 6-20, 6-21, 11-3, 11-13
interrupt number, 6-20
interrupt procedure, 11-13

epilogue, 1-5
preface, 1-5

intrinsic function, 5-13, 6-1, 6-3
intrinsic function library, J-5, K-5
intrinsic function reference, 6-3
INTRINSIC statement, 2-2,5-13,6-1, D-6
intrinsic subroutine, 6-2
invalid operation, 15-22, 15-23
invocation line, J-2, K-2
INW, 6-2
I/O exceptions, 15-3
I/O run-time libraries, 1-3
1/ 0 status specifier, 9-7 thru 9-9, 9-11, 9-12
IRINT, 6-7, 6-8
IRMD,6-8
iRMX 86, K-l
ISIGN, 6-9,6-10
Iw descriptor, 9-14, 9-15

keyword, 3-2

language elements, 3-1
language summary, D-l
LARGE.LIB, 14-3
LDCW87, 6-18
.LE., 7-3
LEN,6-12
length specification, 5-3
lexical relationship functions, 5-13, 6-17
lexically less, 6-17
lexically less or equal, 6-17
lexically greater, 6-17
lexically greater or equal, 6-17
LGE, 6-1, 6-17
LGT, 6-1, 6-17
LIB86,1-2
libraries, 14-2
line, 3-3
line format, 3-2, 11-10, 12-2
LINK86, 1-1, 1-2, 14-1, 14-2
link invocation, 14-1
linking conventions, J-6, K-6
LIST control, 11-2, 11-14, 13-1
list directed formatting, 9-21
list directed input, 9-22
list directed output, 9-23

Index

Index-3

Index

listing content controls, 11-2
listing file, 12-1
listing format controls, 11-2
listing preface, 13-1
literal string descriptor, 9-18
LLE, 6-1, 6-17
LLT, 6-1, 6-17,6-18
load 8087 control word, 6-19
local symbolic name, 3-2
LOC86,1-2
locate invocation, J-6, K-6
locating object modules, J-6, K-6
LOG,6-13
LOGlO, 6-13,6-14
logical assignment statement, 2-1, 8-2
logical conjunction, 7-4
logical data, 5-5
logical data types, H-4
LOGICAL data type, 4-1
logical data values, 5-5
LOGICAL editing, 9-17
logical equivalence, 7-4
logical IF statement, 8-5
logical expressions, 7-1, 7-4
logical IF statement, 2-1
logical inclusive disjunction, 7-4
logical negation, 7-4
logical nonequivalence, 7-4
logical operators, 7-4
logical record interface (LRI), 1-3
LOGICAL statement, 2-2, 5-5,0-6
loop increment! decrement value, 8-5
loop termination value, 8-5
lower dimension bound, 5-9
.LT., 7-3
Lw descriptor, 9-14, 9-17

main program, 2-1,4-1, 12-1
MAX, 6-1,6-11
MAXO, 6-1, 6-11
MAXI, 6-1,6-11
memory allocation, 14-1
memory definition, 5-10
MIN, 6-1, 6-11, 6-12
MINO, 6-1,6-11,6-12
MINI, 6-1, 6-11, 6-12
mixed-mode arithmetic, 7-1
multiplication, 7-1
MOD, 6-8

named common block, 5-12
NaN,7-8
natural logarithm, 6-13
.NE., 7-3
.NEQV., 7-4
nesting of 00,8-6
nesting of IF, 8-3
nesting of INCLUDE, 11-12
NINT,6-7
NOCODE control, 11-3, 11-5, 13-1
NODE BUG control, 11-4, 11-6
NOERRORLIMIT control, 11-9
NOFREEFORM control, l1-lO
nonexecutable statements, 2-1, 2-2
NOLIST control, 11-2, 11-14, 13-1

Index-4

nonrepeatable edit descriptor, 9-13, 9-18
NOOBJECT control, 11-1, 11-15
NOOVERLAP control, 11-16
NOPRINT control, 11-1, 11-2, 11-9, 13-1
normalized numbers, 7-7
NOSYMBOLS control, 11-23
.NOT.,7-4
not a number, 7-8
NOTYPE control, 11-25
NOXREF control, 11-3, 11-26
null value, 9-21, 9-22
number-base editing, 9-17
numeric storage unit, 5-1, 5-3 thru 5-5, G-l
numerics run-time libraries, 1-3
n X descriptor, 9-19

FORTRAN-86

OBJECT control, 11-1 thru 11-4, 11-15, 12-2
object files, 12-2, 13-4
object file controls, 11-1
object module, 11-15, 13-1
octal base specifier, 5-2
OH86,1-2
OPEN statement, 2-1, 9-2, D-6
operator precedence, 7-6
.OR.,7-4
OUTPUT, 6-2
output files, 12-1
output listing, 1-1
OUTW,6-2
overflow, 7-1, 15-23, 15-24
OVERLAP control, 11-16, 15-7

P AGELENGTH control, 11-17, 13-2
P AGEWIDTH control, 11-18, 13-2
PARAMETER statement, 2-2, 5-7, 0-7
pass by reference, H-2
pass by value, H-2
PAUSE statement, 2-1, 8-8, D-7
P editing, 9-20
positive difference, 6-9
precedence of operators, 7-6
precision, 15-24
preconnected file, 9-2
primary controls, 11-1
PRINT control, 11-1, 11-3, 11-19, 12-2, 13-1
PRINT file, 12-2
PRINT statement, 2-1, 9-13, 9-23, D-7
procedure, 2-1, H-5
processor dependent features, B-1
PROG1A.FTN,10-1
PROG1B.FTN, 10-2
PROG1C.FTN,1O-3
PROG2.FTN,10-4
PROG3.FTN,10-6
PROG4.FTN, 10-7
PROG5.FTN,IO-8
program development process, 1-3
program halt statements, 8-8
program listing, 13-1
PROGRAM statement, 2-1, 2-2, 4-1, 0-7
program structure, 2-1
program unit, 2-1, 12-2
pseudo-assembly language listing, 11-5, 13-1, 13-2

FORTRAN-86

range exceptions, 15-20
READ statement, 2-1, 9-9, 9-22, D-7
REAL data type, 4-1, 5-3
REAL function, 6-1,6-4,6-5
REAL statement, 2-2, 5-4, D-8
record, 9-1
record length specifier, 9-3,9-5
record number specifier, 9-9,9-11,9-12
record position control descriptor, 9-18
record termination description, 9-18
REENTRANT control, 5-12, 6-1, 11-20
referencing array elements, 5-10
register usage, H-6
relational expressions, 7-1, 7-3
relational operators, D-9
remainder functions, 6-8
repeat specifier, 5-12, 9-21
repeatable edit descriptor, 9-13, 9-14
reserved word, 3-2
restore 8087 state, 6-20
RETURN statement, 2-1, 5-11, 8-6, 11-20, D-8
Revision history, iii
REWIND statement, 2-2, 9-8, D-8
RINT, 6-7, 6-8
RMD, 6-8, 6-9
RMX-86, K-l
rounding, 7-7
rounding functions, 6-6
RST87, 6-18
RTNULL.LIB, 14-2, 14-3, J-l, K-l
RUN command, J-2, K-2
run-time data representations, G-l
Run-Time Environment, 1-3
run-time exception handling, 1-4
run-time errors, 15-11
run-time initialization, H-6
run-time interface, 1-1
run-time interrupt processing, 1-4
Run-Time Support Libraries, 1-1, 14-2, 14-3
Run-Time System, 1-1

sample programs, 10-1
SAV87,6-18
save 8087 state, 6-20, 6-21
SAVE statement, 2-2, 5-12,6-1,6-23, D-8
scale factor, 9-16, 9-18
scale factor descriptor, 9-18
scale factor editing, 9-20
scratch files, 9-7
sequential access file, 9-1
Series III, J-l
SETINT, 6-20, 6-21, 11-13,1-4
SIGN, 6-9, 6-10
sign-off message, 12-2, 13-1, 13-4
sign-on message, 12-2
sign-on preface, 13-1
sign transfer, 6-9
SIN, 6-14, 6-15
sine, 6-15
SINH,6-16
slash editing, 9-19
SNGL, 6-1,6-4
software environment, 1-2
source listing, 13-1
specific name, 6-3
SQRT,6-13

square root, 6-13
stack usage, H-6
standard line format, 11-10
standards, deviation, A-I
statement elements, 3-1

Index

statement-function statement, 2-2, 6-1, 6-21 thru 6-23, D-8
statement label, 3-2
statement number, 13-2
statement order, 2-2
STC87,6-18
STOP statement, 2-1, 8-8, D-8
STORAGE control, 11-21
storage unit, G-l
store 8087 control word, 6-19
store 8087 status word, 6-20
structures, H-5
STSW87, 6-18
subprogram, 2-1, 4-1 , 6-1
subroutine, 6-1, 6-2, 8-6, 11-20
SUBROUTINE statement, 2-1,2-2,4-2,6-2, D-9
SUBROUTINE subprogram, 2-1, 5-12, 12-2
subscript, 5-8, 5-10, 11-6
substring, characters, 5-10, 5-11
SUBTITLE control, 11-2, 11-4, 11-22, 13-1
subtraction, 7-1
symbol listing, 1-1
symbolic debugging, 11-6
symbolic name, 3-2, 5-7, 8-7
symbol table listing, 11-4, 11-23, 11-26, 13-1, 13-2
SYMBOLS control, 11-3, 11-4, 11-23, 13-1, 13-2
syntactic error messages, 13-1, 15-2

TAN, 6-14
tangent, 6-14
TANH, 6-16
TEMPREAL data type, 4-1, 5-3
TEMP REAL statement, 2-2, 5-5, D-9
TITLE control, 11-3, 11-4, 11-24, 13-2
trapping NaN, 7-9
TREAL, 6-1, 6-5, 6-6
trigonometric functions, 6-14
truncation functions, 6-6
TYPE control, 11-25
type conversion functions, 5-13,6-4
type statement, 5-1, 6-22

unconditional GOTO statement, 2-1, 8-7
underflow, 7-1, 15-24
unformatted data transfer, 9-23
unformatted record, 9-1
unit, 9-1, 9-2
unit specifier, 9-3, 9-7,9-9,9-10,9-12
universal development system interface (UDI), 1-1
universal record interface (URI), 1-2
unnamed common block, 5-12
unnormalized numbers, 7-7
unordered relation, 7-8
upper dimension bound, 5-8
URXLRG.LIB,I-2

value separator, 9-21

warning mode, 7-7
work files, 12-2, ·13-4
WRITE statement, 2-1,9-12,9-23, D-9

Index-5

Index

X descriptor editing, 9-19
XREF control, 11-3, 11-26

Z descriptor, 9-17
zero divide, 15-23
Zw,9-14

Index-6

FORTRAN-86

REQUEST FOR READER'S COMMENTS

FORTRAN-S6 User's Guide
121750-002

Intel's Technical Publications Departments attempt to provide publications that meet the needs of all Intel product
users. This form lets you participate directly in the publication process. Your comments will help us correct and
improve our publications. Please take a few minutes to respond.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of this
publication. If you have any comments on the product that this publication describes, please contact your Intel
representative. If you wish to order publications, contact the Intel Literature Department (see page ii of this
manual).

1. Please describe any errors you found in this publication (include page number).

2. Does the publication cover the information you expected or required? Please make suggestions for
improvement.

3. Is this the right type of publication for your needs? Is it at the right level? What other types of publications
are needed?

,-----,----,----------

---,_. __ .. -", , .. ,.,.'"---------_ .. _--,,

.-_ ... _--", .. , ",---------,-_ .. _ .. , .•.. , .• - ... -...... -.,------,--._,--_ .. ,' ------

4. Did you have any difficulty understanding descriptions or wording? Where?

---,---,--_. __ .. '._--_.-,_.,_ .. _-... -,-,'.'.,.,,,,,-, _ .. , .. '._., _---.'_ ... _----_._" _ •.. ,."_." .. "._"_ .. _" .. ,,.,.,,._,-•.. _---.'---_.,---"., .. _-- ------
._-_._----,----"._,-_ ... ". __ ._,----,----" .. ,."."." , .. _ .. ", .. "" _ ... " .. " ... ,,,,, ,, .. ,, .•. ,, ,,-.. '._." _ .. _-, .. ,._, " .• _'.-... ,._-_. __ .• , _ .. " .. -........ "." ""._,_ .. _,., " ... -....... " .. " " .. _--._ .. ---" ,." .. ,.,., ...• ".,,, ... ,, .. ,," •.. _ .. __ .. _----

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating) _ .. , ___ ,. ___ ,_, .. _, ,., .. _ .. _ ,." .. ,., ,._ _

NAME .. ,"" .. "., _, __ .. " "_.""_"" "., ... ".,""" .. ,,, .. ,, " .. ".,"""",, ", ... " ,." " '," , .. "' ... ,, ,,"" .. ,.,

TITLE ". __ . __ .. __ '_"_"'.".'.""'".""""_"""'_"."''''.''''''''''''''", " " ... "." , ..

COMPANY NAME/DEPARTMENT

ADDRESS
CITY ,,,.,,.,,,,,,,,,,,,,,,.,,,.,,,,.,,.,,,,.,,,,,,,,,,.,,,,,,,, .. ,,,,,,,,,,,,, ... ,,.,,,,.,,""" .. '''''''''''' ",,,.,,,,

Please check here If you require a written reply. 0

DATE " , ..

.".,., "., ... "" .. ,., " , "_.""-.... _ ... "",, .. _,, "" ", .. ,."."" ... , .. ,,,.,,.,,, ... ,.,,, ,, ,, , ,,, .. -.. " .. _, .. _ , .. _ __ _.," .. ". "".""_._ ... ""--,,,, ,,----

STATE

(COUNTRY)

ZIP CODe ... ___ .. ___ _

INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

