








































































































































































































































































































































SP AC20 Compiler Design of Complex Digital Filters Used in the 2920 

Some Practical Considerations 

The procedures described above show how second order filter sections can be 
realized. In selecting the gain for the filter, the user should consider the scaling of 
the variables within the filter. Improper scaling can result.in a number of problems. 

If the variables are very small, it is possible that the 25-bit word width will not 
provide enough resolution, and significant truncation noise will be introduced. 
Because a second order filter of this type may perform the equivalent of integrations 
in which results are obtained by summing many small values, roundoff error can 
occur in unexpected ways. 

If the variables are scaled too large, overflow saturation may result, with behavior 
very similar to that occurring in an analog circuit when the signals exceed the 
dynamic range of the amplifiers. However, an additional consideration may be 
important in 2920 realizations of second order sections. As coefficient products are 
developed by series of additions and subtractions, intermediate values may be larger 
than those finally obtained. 

In general, it is necessary to provide sufficient margins when scaling input variables 
to ensure that overflow saturation does not occur for intermediate values. 
Sometimes the sequence of calculations can be ordered to minimize potential 
overflow saturation. 

A third method to prevent intermediate overflow saturation is to compute some 
fraction of YO, restoring it to full value when it is transferred to Y 1, such as shown 
in Figure 5. This of course adds some noise to the final output, lowering the 
accuracy somewhat. 

The coding generated by the SPAC20 Compiler is already ordered and scaled in this 
manner to minimize overflow. The user must still address the issue of scaling for 
input and for signals propagated from earlier stages. 
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Figure H-S. Method for Preventing Intermediate Overflow 121533-38 
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(If overflow occurs, it will be when YO is increased and loaded to Yl.) 

No additional instructions are necessary in general, because the extra multiplications 
shown in Figure 5 can be performed by modifying the instructions of the original 
realization. 

When a filter consists of a cascade of second order sections, code can be saved by 
performing any gain trimming calculations at just one point ih the cascade. 
However, to maintain properly scaled variables, the gain for the inputs to each stage 
should be adjusted by the appropriate power of two. The proper scaling factor can 
be determined by evaluating the maximum gain from the input to each point in the 
cascade, starting with the first stage. The gain for the input to that stage is adjusted 
to ensure that the overall gain does not exceed unity at any frequency. After each 
stage is adjusted, the process is repeated for the next stage. See Appendix J for more 
details. 

Very Low Frequency Fitters 

As mentioned above, the processes occurring in the recursive second order section 
are equivalent to integration. When very low frequency filters or filters with very 
high Q's must be realized, even the 25-bit word width of the 2920 may not provide 
adequate protection from truncation error. In some cases it may be possible to 
reduce the clock rate (and therefore sample rate) which will reduce coefficient 
precision requirements. 

When other functions prevent reduction of the sample rate, or when the predicted 
. value of clock rate must be lower than the minimum permitted by the 2920, alternate 
programming techniques must be used. (The 2920 word size and the dynamic range 
of the variables being processed establish a maximum ratio of sample rate to 
frequencies of interest.) 

For very low frequency filters, the effective sampling rate must be reduced or the 
effective precision of the processor must be increased. One approach, extended 
precision arithmetic, appears possible but cumbersome. When very low frequencies 
are being used, the coefficients Bl and B2 approach very closely to the values +2 and 
-1 respectively. By realizing t:he filter as shown in Figure 6, the small terms BI-2 
and B2+ 1 are isolated from the large terms and scaled upwards by some power of 
two. The equivalent multiplications may then be done using single precision, which 
is converted back to extended precision by a 2-n scaling. 

Extended precision arithmetic may be executed using masks derived from the 
constants, or by conditional additions. In either case, carries generated by the low 
order word are added to the high order word to maintain carry propagation., The 
carries may be simulated in one of the high order bits of the low order word, tested 
via conditional operations or masking, and then removed by masking or conditional 
addition of a negative constant. Table II shows an extended precision add routine. 

Table H-2. Extended Precision Add Routine (48 Bit Precision) Technique 
Uses Simulated Carry at 2nd Bit From Left of Low Order Word 

ADD YL, XL, ROO ; add low order word (25 bits + carry) 

LDA TMP, YL, ROO ; copy word to temporary location 

AND TMP, KP4, ROO ; mask off simulated carry bit 

SUB YL, TMP, ROO ; clear carry from low order word 

ADD YH, XH, ROO ; add high order words 

LDA TMP, TMP, R13 ; move carry to right . 

ADD YH, TMP, R10 ; add carry to high order word 
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Figure H-6. Very Low Frequency Filter 121533-39 

When low frequency filters must be realized, it is in general more convenient to 
reduce the sample rate rather than attempt to extend the precision of the variables. 
The sample rate may effectively be reduced by using the conditional load operation 
triggered by an oscillator run at a submultiple of the sample rate. The filter calcula­
tions go to completion every nth cycle. Such an oscillator can be realized by the 
program shown in Table III. 

; Oscillator 

SUB OSC, K P1 , R05 

LOA DAR, OSC, ROO 

LOA OSC, KP3, ROO, CNOS 

ADD OSC, KP3, R05, CNOS 

; conditional filter implementation 

LOA Y2, Y 1 , ROO, CNOS 

LOA Y 1 , YO, ROO, CNOS 

Table H-3 

5 U b t r act con 5 tan t K P 1 from as C 

mo vet 0 0 A R for s i g n t est 

re-initiaLize if negative to 

99 time 5 K P 1 

de Lay occurs on lyon cyc ling 

of osc i L Lator 

; remainder of filter calculations are done unconditionally - result is valid 
; only on cycling of oscillator 

The filter code generation may be done with the SP AC20 Compiler by using the 
effective sample rate. To use this filter at the normal sample rate, the output code 
must be edited to add the CNDS operations to the delay realization. 

, 
A constant value is subtracted from a RAM location on each pass through the 
program. If (and only if) that operation causes the result to be negative, the condi­
tion for re-initializing ~he oscillator is met. A conditional load operation restores the 
oscillator to a positive value. Thus the oscillator cycles at a SUbmUltiple of a sample 
rate (at 1/100 in the Table III example.) 

H-13 
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The filter itself is realized using the same equations as are used in any second order 
section, with the exception that the delay realization operations i.e. loading YI to Y2 
and YO and Y I, are performed only on those program passes which re-initialize the 
oscillator. Because the oscillator calculations only produce re-initialization every nth 
cycle, a sample rate has been achieved equal to the 2920 sample rate divided by n. 

On occasion, it may be desirable to operate one or more stages of the filter at a 
higher sample rate than that of the 2920. For example, it may be possible to use a 
lower cost external anti-aliasing filter by sampling the inputs at a higher than normal 
rate, and performing some of the anti-aliasing using a digital filter stage operating at 
this higher rate. Subsequent processing of the data is performed at the nominal rate 
of the 2920. 

One means for achieving the higher sample rate it to use two copies each of the 
sampling routine and the anti-alias digital filter section. Figure 7 shows the impact 
on the external anti-alias requirements obtained by using the double sample rate 
technique. External anti-alias requirements may also be reduced for 2920 outputs by 
the use of interpolating digital filters, i.e. filters which compute values between 
successive samples. 

Interpolating filters may also be realized by operating a filter stage at twice the 
sample rate by using two copies of the program withinin the 2920. There are two 
options for the input of such a filter operating at twice the sample rate. The same 
input sample may be used for both copies of the program, or one copy may use a 
zero-valued input. The latter case resembles using an impulse source where the 
former case is more like a sampled and held source. The methods produce somewhat 
different frequency responses. 

The SP AC20 Compiler can be coerced to produce code for this mixed sample rate 
implementation. To accomplish this, set the TS to the faster rate (say 3 times the 
2920 program loop rate) and, using the CODE command, generate code for the anti­
alias (low-pass) stages of the filter. Three copies of this code must appear in the final 
program. 

Then set the TS down to the 2920 program loop rate, and generate code for the 
remaining stages of the filter. One copy of this code must appear in the final 
program. 

At this point, the filter responses which can be graphed and otherwise examined are 
relatively accurate reflections of the true behavior, at least below half the slower 
sample frequency. This assumes that the signals are transformed between the stages 
using the impulse method (either true input or zero) as opposed to the hold method 
(either true input or held true input). 

In mo~t of the examples described above, a cascade of filter stages has been 
assumed. However, when the impulse invariant transform is used, an alternate 
realization could be found by expanding into a .sum of partial fractions, evaluating 
the impulse response associated with each fraction, and realizing the output of the 
filter as the sum of the section outputs. The resulting realization is shown in Figure 
8b as opposed to the cascade structure of Figure 8a. In some cases, the parallel 
structure may be less sensitive to variable scaling than the cascade structure. 
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EXTERNAL ANTI·ALlAS 

t 
r<JTER 1 

BW fs·BW 

a. Original spectrum showing bandwidth of digital processing. 
External anti-alias filter must pass below BW, stop beyond fs-BW 

t 

EXTERNAL ANTI·ALIAS 

~l_T_ER __ ~ ____ ~ 

Br~~t;=kht 
INTERNAL 
DIGITAL 
FIL TER 

b. Spectrum using double rate sampling. 

t 

External filter passes BW, stops beyond 2fs-BW, internal digital filter performs 
rest of anti-alias function. 

Figure H-7. Effects of Double Rate Input Sampling 

Figure H-8a. Cascade Structure for Complex Filter 
(Directly Derived From Matched Z or Bilinear Transform) 

121533-40 

121533-41 
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Figure H-8b. Parallel Structure for Complex Filters 
(May Result From Impulse Invariant Transform) 121533-42 
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• l APPENDIX I 
FORMULAS USED BY THE 

SPAC20 COMPILER 
n 

The formulas by which the filter response keywords are calculated are given below. 
They depend upon s-plane or z-plane representation of the locations for poles and 
·zeros. Three distinct graphs are used to indicate the quantities named in the 
formulas for AGAIN, and four additional graphs are referred to by the formulas for 
PHASE. Poles are indicated by the character X, zeros by O. The character a shows 
the object's real part (or projection), b shows its imaginary part, and f indicates the 
varying frequency of interest. These letters then appear in the formulas. For z-plane 
graphs, R indicates the length of the vector from the origin to the pole or zero, and 
theta (0) the vector's angle. 

GAIN, MAGAIN, GERROR, and MSQE are defined in terms of AGAIN. GROUP 
is the negative of derivative of PHASE with respect to frequency. The formulas are 
shown in the simplest relation to the graphs. Simplification, grouping, and recom-· 
bination of terms would in some cases produce more compact formulas, but their 
meaning and relation to the positions of poles and zeros would be obscure. In some 
cases, the result of such manipulations is in fact much more complex than the 
original formulation, though it can have computational benefits for the efficiency of 
a tool such as the 2920 Signal Processing Applications Compiler. 

AGAIN 

AGAIN 

IT DIST; 
z; 

IT DIST; 
p; 

AGAIN is the ratio of two products: the product of all the distances of the zeros of 
the filter divided by the product of all the distances of the poles of the filter, where 
distance means the vector distance from the frequency in question (on the vertical"j 
axis) to the position of the zero or pole (or complex conjugate of a pole). 

S-PLANE 
REAL POLE OR ZERO at -a 

DIST(f)= -Jf2+a 2 where N 
N 

normalization factor 
(1 + a) 

121533-29 COM P L EX PO LEO R Z E R 0 a t (-a + j b), (-a - j b) 

(,Ja 2 + ( f - b ) 2 ) (,Ja 2 + ( f + b ) 2 ) 
DIST(f) = N 

w her e the norma liz a t ion fa c tor N = (1 +~) 2 

121533-30 
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SAMPLED S-PLANE (sampled at T) 

b 
I 

t 

b 
I 

J 

REAL POLE OR ZERO at -a 

DIST(f) = 11-e-2rraT *e-j2rrfT I 

121533-29 COMPLEX POLE OR ZERO at (-a + jb),(-a-jb) 

DIST(f) = 11-(2e-2rraTcos2rrbT) e- 2rr jfT + e-4rraT*e-4rrjfTl 

121533-31 

Z PLAN E (sampled at T) 

....... 1 
R 

REAL POLE OR ZERO at R, 0 

DIS T ( f) = I 1 - R e - j 2rrfT I 

121533-32 

COMPLEX POLE OR ZERO at R,0 

DIST(f) = I (1-Re-j 0 e-j2rrfT) (1-Re+j 0 e-j2rrfT) I 

121533-33 
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GAIN (f) = 

MAGAIN = 

GERROR(f) 

MSQE = 

PHASE 

Formulas Used by the SPAC20 Compiler 

J AGAIN (f) I 
20 LOG1Q \ GREF 

unitsindB 

GREF = gainat reference frequency 
speci f i ed by use r 

rna x { A G A I N ( f ; ) 

f; in FSCALE 

GAIN(f) - UBOUNO(f) 

ifGAIN(f) > UBOUNO(f) 

= GAIN(f) - LBOUNO(f) 

ifGAIN(f) < LBOUNO(f) 

= o otherwise 

.... /1 N (GERROR(f,.»2 
, N 2: 

i =1 

N = numb e r 0 f poi n t sin F S CAL E 

f; in FSCALE 

_ Lei - Lei (units are radians) 
Zj Pj 

S-PLANE 

REAL 

e = t a n- 1 f 
a 

COMPLEX 

1-3 
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SAMPLED S-PLANE (sampled at T) 

REAL 

e = ang le of (1-e- 2rraT . e-j2rrfT) 

EeOfa+ib = tan- 1 ~I 

COMPLEX 

e = angle of 1-.2e-2rraT cos 2rrbT e- 2rr jfT + e- 4rraT.e-j4rrfT 

Z PLANE (sampled at T) 

REAL 

(R.G) 

e = ang L e of 1-Re-2jrrfT 

121533-32 

COMPLEX 

e = ang Le of (1-Re- jEl e-j2rrfT) (1-Re+jEle-j2rrfT) 

121533-33 

GROUP DELAY: 

I GROU.P(f~ = -1 dphase 
. 2n' d f 

With HOLD ON, AGAIN is multiplied by 1 sin(x)/x I, where x=TS*FREQ*PI 
which causes GAIN to be corrected by adding 20 10glO 1 sin(x)/x 1 and PHASE to be 
corrected by adding x. GROUP is corrected by subtracting TS/2. 

With HOLD OFF, the above corrections are omitted. 



APPENDIX J 
SCALING AND OTHER 

C'ONSIDERATIONS 

Scaling 

Each stage of a filter performs various arithmetic operations, which have the poten­
tial for causing overflow saturation if the numbers coming in are too large. Thus the 
issue arises of scaling down such input to avoid inadvertent overflow. If the signal 
input to the filter were a pure sine wave, then the peak AGAIN for each stage would 
indicate how incoming signals needed to be scaled in order to avoid saturation or 
overflow within that stage. That is, if the peak AGAIN under these circumstances 
were 50 for stage 1, the next higher power of two should be used to scale the input. 
Thus a right shift of six, equivalent to dividing by 64, would be the correct scaling, 
e.g., 

LOA INPUT, OAR, R06 

If the first two stages taken together indicated an AGAIN peak of 250, the input to 
the second stage needs only an additional reduction factor of 4, i.e., rightshift 2, as 
part of the scaling has already been done at the input to the first stage. Successive 
stages repeat this reasoning, using the cumulative effect (product) of all earlier scal­
ing factors to determine what, if any, additional scaling is needed. (Note: set HOLD 
OFF when using AGAIN to determine scale factors, since the HOLD compensation 
really does not affect the signal until it leaves the 2920 chip.) 

Because inputs are limited to the range plus-or-minus 1.0, the largest possible 
instantaneous output of a filter may be found by integrating the absolute area over 
the impulse response of the filter. In general this value is unnecessarily conservative, 
and may result in excessive truncation error. 

Even assuming this input scaling has been performed, it is possible that intermediate 
calculations within a filter stage will cause overflow. For example, warning messages 
produced by the Compiler in the code may say, e.g., 

II ;NOTE: MAKE SURE SIGNAL IS <0.547 11 

indicating such intermediate overflow will occur unless the expected maximum out­
put signal amplitude is less than 0.547. 

If the input to a stage is scaled so that the expected maximum output signal is less 
than 0.25, such intermediate overflow cannot occur (for poles and zeros within the 
unit circle on the z-plane). 

As a rule of thumb, it should be sufficient to use four times the MAGAIN (rounded 
up to the next power of 2) as the scaling needed for each stage. That is, the user 
should ensure that the scaling before any stage is at least four times the MAGAIN 
due to the combination of all previous stages and the present stage under 
consideration. 

During the coding process, if ~l is implemented first in the coding, a warning 
message will appear, advising the user to keep the signal below a certain level. If the 
above scaling factor of four times MAGAIN has already been performed, then the 
purpose of these messages has already been accomplished. 

1-1 



Scaling and Other Considerations SP AC20 Compiler 

J-2 

Signal Propagation 

In the code output from the SPAC20 Compiler, you will find, usually once per 
module, an ADD or LDA instruction using names like INO, INl, followed by the 
stage label, e.g., INO_Zl for zero 1. These are the instructions which must be 
replaced using the correct scaling and appropriate input source, which depends on 
the sequence and combination of poles and zeros, as follows: 

The table below indicates the number of inputs and outputs for the four kinds of 
poles and zeros. A complex pole takes in one signal and produces three output 
signals, whereas a complex zero uses three inputs and produces one output. A real 
pole has one input and two outputs, while a real zero takes in two signals and 
outputs one. 

(using hypothetical poles and zeros labeled 3 (for complex) and 2 (for real). 

Input Signal Output Signal 
Signals Delay Signals Delay 

Complex Pole INO_P3 Signal Input, OUTO_P3 Signal Input, 
not delayed not delayed 

OUT1_P3 Delayed 1 sample 
interval 

OUT2_P3 Delayed 2 sample 
intervals 

Real Pole INO_P2 Signal Input, OUTO __ P2 Signal Input, 
not delayed not delayed 

OUT1_P2 Delayed 1 sample 
interval 

Complex Zero INO_Z3 Signal Input, OUTO_Z3 Signal Input, 
not delayed not delayed 

IN1_Z3 Delayed 1 sample 
interval 

IN2_Z3 Delayed 2 sample 
intervals 

Real Zero INO_Z2 Signal Input, OUTO_Z2 Signal Input, 
not delayed not delayed 

IN1_Z2 Delayed 1 sample 
interval 

Merging Code for Poles and Zeros 

From the table it is easy to perceive the proper meshing of the code for a complex 
pole followed by that for a complex zero: 

I N 0_ Z 3 E QUO U TO _P 3 

IN1_Z3 EQU OUT1_P3 

IN2_Z3 EQU OUT2_P3 

This provides the correct, suitably delayed pole output signals to the appropriate 
zero inputs. Similarly, to merge the code for a real pole followed by a real zero, you 
can use 

INO_Z2EQU OUTO_P2 

IN1_Z2 EQU OUT1_P2 
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If, however, a complex pole is followed by a real zero, then as the table indicates you 
must select the pole output with the correct delay, i.e., 

INO_Z2 EQU OUTO_P3; no de lay 

IN1_Z2 EQU OUT1_P3; delay 

A complex pole followed by two real zeros cannot be directly merged. The first zero 
can be merged with the pole as above. Then the signal needs to be propagated to the 
second real zero (here labeled Z22). For example, the code below 

INO_Z22 EQU OUTO_P3 

LOA IN1_Z22, INO_Z22 

will accomplish this for a real zero. An equivalent method in the real case is to create 
a pole at O,O,Z and then merge it with the zero. For a complex zero, the code below 
should be used: 

INO_Z3 EQU OUTO_P3 

LOA IN2_Z3, IN1_Z3 

LOA IN1_Z3, INO_Z3 

Use of Temporary RAM Locations 

The coding for equations of the form YY = C*YY is only optimal assuming no 
scratch RAM locations are to be used. You can often improve it by the simple expe­
dient of coding in two steps, first saying 

COOEXX=1.*YY 

and then, after saving that code, enter CODE YY = C * XX. Using XX as a scratch 
variable in this way can.be a useful technique. 

If more than 16 bits of precision is needed in constants, say in PERROR or ERROR 
constraints, the code produced with the standard SPAC20 algorithms may suffer. 

COOEYY= (1 +1/2**17) *XXERR<O 

is an example. Five instructions are generated where 3 could suffice. One way 
around this is to code in several steps, e.g., 

CODE YY = C*XX ERR< (1/2**13) 

DE FINE • ERR 0 R $ $ S A V E R = ERR 

CODE XTMP = (1/2**13) * XX 

CODE Y Y = ( • ERR 0 R $ $ S A V E R * 2 * * 13) * X T M P + yy ERR < ( 1 /2 * * 1 0) 

This effectively combines coding for the top 13 bits and for the least significant 13 
bits. 

J-3 





APPENDIX K 
ERROR MESSAGES AND 

CORRECTIVE ACTIONS 

Error conditions encountered by the SPAC20 module cause a numbered error 
message to print on your console. 

Since commands are read on a line-by-line basis, the Compiler will not flag any error 
until after an entire line has been entered. When the first command error is found, 
command processing stops and the offending line has no further effect on any 
internal variables. 

If a syntax error is encountered by the Compiler during a multi-line compound 
command, the error is reported and the line is ignored. Whenever possible, the lines 
already successfully entered in the compound command are kept and input may 
resume. Sometimes the compiler finds it impossible to do so and in this case the 
entire compound command is lost. The prompt for the next input line indicates 
which of these options was selected: " .... *" indicates continued compound 
command input; "*,, indicates new command input. 

Errors during compound command execution will terminate processing, leaving the 
compile-state intact as of the last successfully completed command. 

Error numbers CO to CF are warnings of conditions which are probably undesired. 
These warnings do not terminate compound command processing. 

The following list of error messages does not include those which can come directly 
from ISIS-II. These appear in a separate list after the Compiler's messages. 

In some rare cases, the error number may be printed without its associated message, 
asin 

ERR80: ? 

This means an Error 80 was detected but some other (probably unrelated) problem 
prevented the Compiler from printing the message, e.g., error message file 
SPAC20.0VE is missing. 

ERR 71: 

ERR 72: 

ERR 73: 

ERR 74: 

ERR 75: 

ILLEGIBLE NUMBER 

HELP FILE MISSING 

SAMPLE RATE UNDEFINED 

GREF AGAIN ZERO 

NEGATIVE RADIUS 

A floating point number input cannot 
be deciphered. 

The help file SPAC20.0VH is missing. 

TS has not yet been assigned. TS 
must be assigned a nonzero postive 
value before sampled poles and 
zeros can be created or before IM­
PULSE or STEP responses are ex­
amined. 

The frequency specified in the GREF 
has absolute gain zero and this can­
not be used as a reference level. 
Select a different GREF frequency. 

Poles or zeros defined in the Z-plane 
must have positive radius. A negative 
radius is equivalent to a positive 
radius with an angle offset of 180 0 =rr 

radians. 

K-l 



Error Messages and Corrective Actions 

ERR 76: POLE/ZERO NOT SAMPLED 

ERR 77: CONSTRAINT TOO SEVERE 

ERR 78: ANGLE> PI OR <= -PI 

ERR 79: EXTRA CONTIN UOUS ZEROS 

ERR 7A: ILLEGAL CODE COMMAND 

ERR 7B: INTEGER NEEDED 

ERR 80: SYNTAX ERROR 

ERR 81: ~ INVALID TOKEN 

ERR 83: INAPPROPRIATE NUMBER 

ERR 84: PARTITION BOUNDS ERRQR 

ERR 85: ITEM ALREADY EXISTS 

ERR 86: ITEM DOES NOT EXIST 

K-2 
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A pole or zero must be sampled 
before code can be generated. Move 
it to the TS or Z planes. 

The pole or zero or multiplication 
cannot be coded within the instruc­
tion constraint specified. Try relaxing 
the INST constraint. 

Poles or zeros in the Z-plane must 
have angle between ±rr. Take the 
desired angle mod 2rr to obtain this. 

The STEP or IMPULSE time 
responses cannot be calculated 
because there are more continuous 
zeros than continuous poles. Such a 
combination cannot be physically 
manifested. 

The code command issued does not 
exist, e.g., CODE Y = 1 *X + Z. 

An integer valued expression is 
needed in context e.g., POLE 1.5. 

The token flagged is not one that is 
allowed in the current context. 

The token flagged is illegal because it 
does not follow the rules for a well­
formed token. The line is ignored and 
you must re-enter your intended 
command. Check the correctness of 
the syntax and variable-names used. 
A string longer than 255 characters 
can result in this error. 

The value printed on the preceding 
line is not appropriate in the current 
context. Some contexts allow only 
certain numbers, e.g., TS must be 
positive. 

The partition values entered in a 
command are not correct. Either the 
left part of the partition is greater than 
the right part, or the values of the 
partition extremes are out of range in 
the current context. For example, 
Poles 3 thru 2. 

The symbol or macro entered in a 
define command is currently defined 
in the symbol or macro table. You 
may need to validate the curr~t 

usage of this symbol or macro, or 
perhaps merely use a different spell­
ing to maintain the distinction. 

The item printed on the preceding 
line does not reside in the symbol 
or macro table. It may have been 
removed in an earlier test session, 
or it may be in a change you haven't 
inserted yet. 
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ERR 90: MEMORY OVERFLOW 

ERR 91: STACK OVERFLOW 

ERR 92: COMMAND TOO LONG 

ERR 94: NON-CHANGEABLE ITEM 

ERR 90; LINE TOO LONG 

ERR AO: TOO MANY PARTITIONS 

ERR B9: NO HELP AVAILABLE 

WARN C8: F.P.INVALID OPERAND 

WARN C9: F.P. OVERFLOW 

WARN CA: F.P. UNDERFLOW 

WAR CB: F.P. ZERO-DIVIDE 

WARN CC: F.P. DOMAIN ERROR 

Error Messages and Corrective Actions 

Either too many poles and zeros have 
been defined (more than 20), or too 
many macros or symbols have been 
defined or some other internal buffer 
size has been exceeded. If the 
message 

MEMORY RECLAIMED 

appears on the next line, success 
may be obtained by simply reissuing 
the command which caused the 
original overflow. Before doing so it is 
recommended to delete any unused 
symbols or macros first. 

The capacity of a statically allocated 
internal stack has been exceeded. 
This is probably due to an exces­
sively complicated command, e.g., 
one with 20 parenthesis pairs. An 
example would be 

DEFINE .DAR$SAVED = 
(((((((((((((((((DAR))))))))))))))))) 

Too complicated a command due to 
number of operators, most probably, 
asin 

DEFINE .TEMPFUNC = 

1+8*9-7/44* .... 

out to many operators. Break it up in 
several smaller commands. 

An attempt to alter a read-only item, 
e.g.,INST. 

Command line was longer than 122 
characters. 

An fscale or Ibound or ubound has 
been specified with more than the 
maximum number 10 of piecewise 
linear segments. 

Help has been requested for a help 
item which has no help message. 

The program tried to use a value 
resulting from an underflow or 
overflow condition. If this message 
persists, try flushing the Compiler's 
internal storage with the command 
XSIZE = XSIZE. 

A value larger than 10 times the 
largest allowable number occurred in 
some expression. 

A value smaller than the smallest 
allowable number occurred. One 
example is 1/Iargest#. 

Dividing by zero was attempted. 

One example would be the square 
root of a negative number. 

K-3 
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The last five warnings are flagged during command execution due to an 
inappropriate action or result for a floating point operation. See the documentation 
for the FORTRAN floating point libraries for further details. 

ERR E7: 

ERR E8: 

ERR E9: 

ERR EF: 

ERR FO: 

ERR F1: 

ERR F3: 

ERR F6: 

ERR F9: 

ERR FA: 

ERR FH: 

ILLEGAL FILENAME 

ILLEGAL DEVICE 

FILE OPEN FOR INPUT 

FILE ALREADY OPEN 

NO SUCH FILE 

WRITE-PROTECTED FILE 

CHECKSUM ERROR 

DISKETTE FILE REOU IRED 

ILLEGAL ACCESS 

NO FILE NAME 

NULL FILE EXTENSION 

The filename specified does not 
conform to a well-formed ISIS 
filename. See ISIS Manual for valid 
formulation and device labels. 

Illegal or unrecognized device in 
filename. An invalid device label was 
used, e.g., :DO: instead of :CO, or 
something unrelated such as :PO:. 
See ISIS Manual for valid list. 

Attempt to write to a file open for 
input, e.g., PUT :CI:, a file predefined 
as console input. 

Attempt to open a file that was 
already open. 

The file specified does not exist. 
Possibly a wrong or missing device 
label, as in typing :F2:FILE when you 
meant :F3:FILE, or a file missing due 
to forgetting to copy it onto a new 
disk. 

The file named for output is 
write-protected and cannot be over­
written. 

An overlay file cannot be loaded 
because it has become trashed. 

A file was referenced which needs a 
diskette. 

Attempt to open a read-only file for 
the purpose of storing data (e.g., 
specifying :CI: as the list device) or to 
open a write-only file as a source of 
data (e.g., :LP: in an include 
command). 

No filename specified for a diskette 
file (e.g., no filename following :F2:). 

An expected filename extension was 
not found (e.g., :F2:FILT.). 



abbreviations, 2-4, F-2, Appendix B 
ABS, B-1 
accuracy of code, 7-4 

see also precision 
ACOS, B-1 
actual parameters, 9-3 
add to a file, see APPEND 
adders, H-3 
advanced techniques 

pertinent to filters, Chapter to 
re other signal processing, Chapter 11 

AGAIN,I-18, 2-5,5-1,5-2,5-4, B-3, 
I-I, J-l 

alias, 4-5 
All-pole filter coding 

example macro, to-9 
resulting file, to-14 

ampersand, 2-2, 3-1, F-l 
amplitude 

desired output 1-1 
and phase information in complex gain, 

H-l 
analog filters, H-l 
analog-to-digital, 1-4, G-l 

see A-to-D 
AND, 9-9, B-1 
ANGLE, 2-9, B-1 
apostrophe, 2-3, 6-3, 9-4, 9-5 
APPEND, 1-3,2-6,7-3,8-4,8-6,9-1, B-2 

default objects, 8-4 
arithmetic expression, 2-8, 4-2, E-5 
ASCII,2-2 
ASIN, B-1 
Assembler, 1-2,7-1 

code submission to, Appendix G 
options, G-2 
tasks before invoking, G-l 

asterisk, 1-2,2-2,2-8,2-9,3-1,6-2,8-1,9-1 
see also double-asterisk, 

AT, 5-1, 5-2, B-4 
at-sign, 2-2 
ATAN, B-1 
A-to-D conversion macro, 

definition, 11-3 
invocation, to-tO, 11-6 

attenuation, 6-2 
AUTO, 6-2, B-4, C-l 
avis, second-stage ariel evolution, 

band-limited signal reconstruction, H-3 
best yet code, 7-1 
bibliography, Preface-iv, 1-2,2-7, F-l 
Bilinear transform 

equations, Appendix H-7 
example use in design, H-8 
macro, to-6 

binary constant, 2-7, E-3 
BNF (Backus Naur Form), Appendix D 

INDEX 

boolean 
expressions, 9-9 
operators, 9-9 

BOUNDS, 5-2, B-3 
bounds 

on error, 
maximum re gain, 7-1 to 7-3 
mean square re gain, 7-1 to 7-3 
movement re poleizero, 7-3 

on gain, 1-3 
invalid specifications, 5-3 
lower, 5-2, 5-3 
upper, 5-2, 5 .. :3 

buffer 
for code, 7-1,8-4,9-6 
for graphics, 6-3 

Butterworth filter macro, to-2 
BY, 4-4, B-4 

canonical forms of digital filters, H-3 
carriage-return, 2-2, 3-1, 9-4, F-l 
cascaded stages, 1-4, H-2, H-12, H-14, 

H-15 
change 

commands, 3-2, E-6 
of plane via MOVE, 4-5 
see also 1-5ff 

changeable scalars, 2-4, 2-5 
character 

set, 2-2 
strings', 2-3 

charts, Appendix E 
Chebyshev filter 

macro, 1-9, to-4 
used, 1-10 

CODE, 1-1,2-5,7-1, B-2, E-9 
code 

accuracy, 7-4 
and ESC, 7-1 
buffer, 7-1,9-6 
compaction, 1-4, Appendix J 
constraints, 1-4, 7-1 
editing, 1-4, G-l 
for equations, 7-4 
for poleizero~ 1-3, 7-2 
general signal processing, 1-3, Chapter 11 
generation, 1-1,1-4, 1-5,7-1 
merging, Appendix J 
object, 1-2 
review, 1-4, 7-1 
revision, 1-4, G-l 
submission to 2920 Assembler, 

Appendix G 
using temporary RAM locations, 

Appendix J 
coefficients determine filter behavior, 

H- 3ff 
closely approximated in 2920, H-tO 

Index-l 
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Index-2 

colon 
in device names, 8-2 
to invoke macros, 9-2, 9-3 

comma, 2-1, 2-3, 3-1,4-2,5-2,7-1,9-4,9-5 
commands, D-l, E-2 

and tokens, 2-1 
block, 9-1 
code, 7-1, E-9 
change, 3-2, E-6 
compound, 1-5,9-1 ff 
display, 3-5, E-8 
entry, 3-1 
file, 8-1, E-9 
graph, 6-3, E-9 
line continuation, 2-2, 3-1 
poleizero, 4-1 to 4-5, E-7 
sequences, 9-1 ff 
simple, 2-4, 3-1 
symmetry, Preface-iv 

comments, 3-1 
in code, 7-1 
into file, 8-4, 9-6 

compaction of code/program, see code 
Compiler 

differences, Preface-iv 
interaction with other products, 

Preface-ii 
introduction, 1-1 
uses and purposes, Preface-iii, 1-1,7-1 

complex 
frequency, 1-1 
network, H-l 
numbers, 1-1 
pole/zero 

defined, 1-3,4-3,4-4 
input/output signal delays, 1-2 
realization diagram, H-4 

valued graph, 1-1 
variables, H-l, H-5 

compound commands, 1-5,9-1 to 9-13, D-4 
conditional, 9-11, 9-12 
iteration control, 9-8 to 9-10 
macros, 9-1 to 9-7 

Concepts of filter design, 1-1 
conditional 

execution, 9-11 
expression, 9-8 to 9-10 

configuration, Preface-iii 
conjugate 

complex numbers, H-l 
pole pairs, 1-3,4-3, H-l 

conjunction 
bit-wise integer, see MASK 
logical, see AND 

console, 1-4, 1-5,2-5,6-2,8-2,8-3,9-7 
constant 

binary, 2-7, 2-13 
decimal, Preface-v, 2-7, 2-13 
hexadecimal, Preface-vi, 2-7, 2-13 
in coding equations, 1-4, 7-1, 7-4 
keywords, B-1 
numeric, Preface-vi, 2-7, 2-11, E-3 
suffix, 2-7 
symbolic, 1-3, 1-4,2-6 
system, 2-4, 2-11, E-3 

constraints 
default, 7-2 
on coding, 1-3, 7-lff 
too severe, 7-1, 7-3 

CONTINUOUS, 4-1, 4-2, 4-4, 4-5, B-4 
continuous 

filters, 1-1,4-1, H-5 
compared to digital, H-6 

poles/zeros, 1-3,4-3,5-2 
contribution to inaccuracy of time 

responses, 5-4 
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s-plane, 1-1, 1-3,2-4,4-1, H-6 
controlling a loop, see REPEAT, COUNT 
convolution, H-2 

approximation, 5-4 
coordinates 

as primaries, 2-9, 2-12, E-5 
polar (z-plane), 1-3,4-1,4-2 
rectangular (S, TS planes), 1-3,4-1,4-2 

copy 
allIlO to a file, see LIST 
files, F-l 
state or macros from a file, see 

INCLUDE 
corrective actions for error messages, 

Appendix K 
COS, B-1 
COUNT, 9-8, E-lO 
CR, carriage return 
create, 

a file, see PUT or APPEND 
objects or symbols, see DEFINE 

cursor controls, 1-4 

dash,6-3 
dB, decibels, as in G REF 
DC, direct current, as in GREF 
dead band, C-l 
decimal 

constant, 2-7, E-3 
point, Preface-v 

DEFINE command, B-2, E-7 
complete form, E-7 
for macros, 9-2, E-ll 
for polesizeros, 4-2 
for symbols, 3-3 
see also sample session, 1-5ff 

Defining 
a filter, 1-3 
macros, 9-1, 9-2, E-ll 
poles or zeros, 1-3,4-2 
summary chart, E-l 
symbols, 2-6, 3-3 
your own commands, 1-5, 10-1 

definitions for keywords, Appendix B 
delimiter, 2-2 
design, 

filter, 1-1 
review, Appendix H 

device names, 8-2 
digit, Preface-v, 2-2, see constant 
digital 

filtering, H-3 
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filters, canonical forms, H-3 
diagrams, H-4 

signal 
processing, Preface-iv, Appendix H 

digital-to-analog, 1-4, G-l 
DIR MACRO, 9-7, B-2, E-ll 
disjunction 

exclusive, see XOR 
inclusive, see OR 

diskette 
drive, 8-2 
file, 8-2, 8-3, 8-6 

DISPLAY, 8-4, 8-5, B-2 
display 

commands, 3-5, E-8 
from any table, summary chart, E-l 
macros, 9-7, E-ll 
of code, 7-1 
of file, 1-5,8-4 
of filter responses, 1-4 
of object values, 2-4, 3-4 
see also simple sample session, 1-5ff 

display text string/expression, with copy to 
List file, see WRITE 

distortion 
correction via HOLD, 5-4 
from output Sand H, 5-4 

division 
macro 

definition, 11-2 
invocation, 11-5 

operator, 2-8, 2-9 
documenting a session using 

comments, 3-1, and 
LIST, 8-3 

dollar-sign, 2-2, 2-7 
don't care conditions 

effect on CODE, 5-3 
in bounds, 5-2, 5-3 

double-asterisk 
showing continued input line, 3-1 
("to the power"), 2-8 

doubling the sample rate, 4-1, H-14, H-15 
drivename, 8-1, 8-2 

e,2-9 
editing 

code after generation, for assembler 
submission, 1-4, G-l 

commands at console, 3-1 
macros, 9-2 

ELSE, 9-11 
EM, 9-2, 9-7 
END, 9-8, 9-11, 9-12 
Entering commands, 3-1 
equal sign, 2-5, 3-2, 3-3,4-2 
Equations, coding, 7-4 
ERROR, 2-5, 7-1, 7-4, B-3, 1-3 

default, 7-4 
error 

bounds on gain, 1-4, 7-2 
constraints, 7-1 ff 

ERROR 
MERROR 
MSQE 
PERROR 

messages and corrective actions, 
Appendix K 

on read-only, 3-2 
on undefined or already defined symbol, 

3-3 
Escape key, 1-5, 1-7,2-2,7-1,8-4,9-4,9-8, 

F-l 
EVALUATE, 1-8,3-4, B-2 
execute 

command block 
conditionally, see IF, WHILE, UNTIL 
forever, see REPEAT 
number of times, see COUNT 

commands from a file, see INCLUDE 
EXIT, 1-3, 1-20,8-2, B-2, F-2 
exit clauses, 9-8 to 9-11, 9-13 
EXP, 2-9, B-1 
exp, expression 
expansion of macro, 9-7 

valid commands in, 9-5 
exponentiation 

limitation, C-I 
number raised to a power, **,2-8,2-9 
of natural base e, EXP, 2-9 

expressions, 2-12,4-2,4-4, 5-1, 6-1, 6-2, 
7-1,8-3,9-9,9-10, E-5 
arithmetic, 2-8, E-5 
boolean, 9-9 
evaluation, 2-8, 2-9 
integer, 2-8, 4-2, E-5 
logical, 9-9 
relational, 9-8 

extending 
precision, H-12, 1-3 
the language, 1-5, 10-1 

extension to filename, 8-2 

FALSE, 9-9, 9-11 
features of the Compiler, Preface-i 
file 

commands, 8-1, E-9 
handling, 8-1 to 8-6 
names, 8-2 
temporary macro, 9-1 

filing and retrieving 1-4, 8-4 to 8-6 
filter 

analog, 5-4, H-l 
continuous, 1-1 
design, 1-1 

commands, 0-2 
review, Appendix H 

digital; 1-1, H-l 
examples of advanced techniques, 

Chapter 10 
implementing, 1-1, H-9 
low frequency, H-12 
response functions, 5-4 
response keywords, 5-1 

factors used, 5-4 
responses, 2-12 
sampled, 1-1, 1-11, H-5, H-7 

FIR filters, C-l 
first -order, see stages 
fixed frequency vs. geometry, 4-1 

interaction with sample-rate and 
implementation, 4-1 

Index 

Index-3 
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floating point, 2-3, 2-5, 2-7, 2-9,3-3 
limitations, C-l 

flow of control, 3-1; see compound 
commands 

formal and actual parameters, 9-3, 9-7, 
10-1 

formulas, Appendix I 
fraction, Preface-vi, 2-7 
frequency 

and plane and sample-rate, 4-1 
for BOUNDS, 5-2 
for·GREF,5-1 
in FSCALE, 6-1 
range of interest, 1-4, 6-1, 6-2 
response, 1-4, E-4, Chapter 5 

functions, 2-9 
keywords, 5-1 

scale, 5-3, 6-1 
FSCALE, 1-6, 2-5, 3-3, 5-1 to 5-4, 6-1, 8-4, 

B-3 
full DEFINE and REMOVE, E-7 
functional categories, Preface-iv 
Functions, 2-4, 2-11, B-1, E-4 

of filter response, 5-1 

GAIN, 1-6, 1-7,5-1,5-4, B-3, 1-3 
gain 

absolute, 5-2 
maximum, 5-2 

characteristic, 1-1 
deviation from bounds when coded, 7-2 
from individual pole, 5-2 
reference, 5-1 

generation 
of code, 1-4,7-1 to 7-4 
of graphs, 6-1 to 6-3 
of listings, 8-3 

geometry 
re frequency, sample rate, and choice of 

plane, 4-1 
GERROR, 5-1, 5-3, 6-2, B-3, 1-3 
GRAPH, 1-4,6-2,6-3, B-2, E-9 
graphable keywords, 5-1 
graph commands, 6-3, E-9 
graphics 

area, 6-2 
buffer, 6-3 
capability, 6-1 
characters, 6-3 
resolution, 6-2, 6-3 

graphs, 1-3, Chapter 6 
see also simple sample session, 1-5ff 

GREF, 1-6,5-1,8-4, B-3, 1-3 
restriction, 5-2 

GROUP, 5-1, 5-3,5-4, B-3, 1-4 

hard-copy, Preface-i, 1-4,6-3 
hardware configuration for SPAC20, 

Pref~ce-ii 
HELP 

messages, 1-2, 1-5, Appendix A, B-2, 
E-2, F-l 

hertz, 4-1, H-7 

hexadecimal 
fraction with leading zero, 2-7 
number, Preface-vi, 2-7, E-3 

hidden spikes, 5-2, 5-3 
high-frequency 
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continuous pole/zero inaccuracies, 5-4 
droop from sample-and-hold, 5-4 

HOLD, 1-18,2-6,5-4,8-4, B-2, 1-4, J-l 
HPI, 2-4, 2-9, B-1 
Hz, hertz, revolutions/cycles per second, 

see also H-7 

identifier, 2-3, 7-1 
filename, 8-2 

IF, 9-11, B-2, E-1O 
lIR filters, C-l 
IMAG, 2-9, B-1 
implementing filters with the 2920, 1-4, H-9 
IMPULSE, 2-6, 5-1, 5-4, B-3 
Impulse response 

achieved by network, H-5 
analysis, H-2, H-3 

INCLUDE, 1-5, 1-9,2-6,8-6,9-1,9-2, B-2 
input line 

continuation, 3-1 
length, 3-1, F-l 

input/output names for poles/zeros, J-2 
input to assembler, 1-4, Appendix G 
INST, 1-12,2-5,7-1, B-3 

default, 7-2 
installation procedure, Appendix F 
integer, 2-5 

expression 2-8,4-2,4-3, 9-8, 9-9, E-5 
interactive 

design sessions, 1-1 
manipulation, 1-1 
sample session, 1-5 to 1-20 

interface 
with ISIS- II 8-1, 8-6, Appendix F 

interrogation commands, 0-4 
interrupted session restart, 1-4, 8-6 
interrupting any command, see ESCape 
invalid numeric constants, 2-7 
invoking macros, 9-2, E-ll 
iSBC-31O, Preface-iii, iv, F-l, C-l 
ISIS-II, Preface-iii 

installing SPAC20 under, Appendix F 
interface, 8-1 
loading, F-2 . 

iterative processes, 1-5 

keyboard calculator, 3A 
Keywords, 2-3, 2-4, Appendix B 

commands, B-2, E-2 
constants, operators, and functions, 

B-1, E-3, E-4 
gain-related, 5-1 
filter response, 5-1 
modifiers, B-4 
objects, B-3 

keyword references, 2-5, 2-6, 2-11, D-2, E-4 

label of pole/zero, 4-2 
language elements, 2-1 



SP AC20 Compiler 

Laplace transforms 
used in impulse response analysis, H-3 

LBOUND, 5-1 to 5-3, B-3 
leading zero, 2-7 
limit 

on characters in identifier, 2-3 
on partitions in 

BOUNDS, B-3 
FSCALE, 6-1 

limit cycles, C-l 
linear, 1-1, H-3 
line-editing characters, 3-1, 3-2 
line-feed,3-1 
line printer, Preface-ii, 1-2 
LIST, 1-2, 1-5,6-3,8-3, B-2 
listing 

all input/ output, 8-3 
help messages, 1-2 
to file, console, printer, 8-2, 8-3 

locating poles and zeros, 4-1 
LOG, 2-4,2-9, B-1 
logic 

conditional control, 9-1, 9-11, 9-12 
of iterations, 9-8 to 9-10 

operators, 2-3, 9-9 
loop, 9-8 

in macro invocation, 9-3 
using compound commands, 9-8 to 9-10, 

9-13, E-I0 
low frequencies, 1-3, H-12 
:LP:, 1-2,8-2 

MACRO, 8-4, 9-7, B-3, E-II 
macro 

body, 9-1 
command functions, 9-1 
defining, 9-2 
directory, 9-7 
displaying, 9-7 
editing, 8-6, 9-2 
error checking, 10-1 
expansion, 9-7, 9-8, 11-4 
file, 9-1 
in loop, 9-8 
invoking, 2-3, 9-1, 9-2,11-4 
library, 8-6 
models, 9-2 to 9-6, Chapters 10 and II 
names, 9-2, 9-7 
parameters, 2-3, 9-1, 9-3 
removing, 9-7 
strings in, 9-4 
syntax checking, 9-1, 9-7 
usage, 1-3, Chapters 10, II 
used under SUBMIT, 8-6 

macros, Preface-iii, 9-1, Chapters 9-11, 
0-5, E-II 
filter, see 

All-pole coding 
Bilinear 
Butterworth 
Chebyshev 

other signal processing, see 
A-to-D conversion 
division 

multiplication 
sawtooth 
sinusoid 
traingular 

supplied-file, F-I 
MAGAIN, 2-5,5-1,5-2,6-2, B-3, 1-3, J-I 

hidden spikes, 5-2 
manuals 

reference, Preface-iv, 1-2,2-7, F-I 
mapping to Z plane, 1-3, H-6, H-7 
MASK, 2-8, 2-9, B-1 
matched-z transform, 4-1,4-5, H-6 
math board, see iSBC 
maximum 

absolute gain, 5-2 
gain error, 5-3 

mean-square-error, 1-4,5-3,7-1 to 7-3 
merging code for poles and zeros, 

Appendix J 
MERROR, 2-5, 5-1,5-3,6-2,7-1 to 7-3, 

B-3 
minima and error constraints, 7-1,7-4 
minus, 2-3, 2-8, 2-9 
MOD, 2-8, 2-9, B-1 
modifiers, 2-4, B-4 
modules of code, 1-4 
MOVE, 4-4, B-2, E-7 

see also 1-5ff 
movement of poles or zeros 

as a constraint on coding, 7-1, 7-3 
by command, 1-3,4-4 
due to approximate coding, 7-1, 7-3 

MSQE, 2-5, 5-1, 5-3,6-2, 7-1 to 7-3, B-4, 
1-3 

multiplication 
conversion into 2920 ADDs and SUBs, 

H-1O 
macro 

definition, 11-1 
invocation, "11-4 

operator, 2-8, 2-9 
multiplier, 7-1, 7-4, see also constant 

in digital filter block diagram, H-3ff 

Names 
device, 8-2 
file, 8-2 
ISIS-II, 8-2, F-I 
of signal values in code, 1-14,7-1,10-12, 

10-14, 10-15, 11-8, 11-10 
see also keywords, Appendix B 
symbolic, 1-4,2-3,2-6, 7-1 
system constants, E-3 
user, 2-2, 2-6 

natural base e, 2-9 
nesting compound commands, 9-12 
non-scalars, 2-5 
non-changeable scalars, 2-4 
normalization, 1-2,5-1,5-4, I-I 
NOT, 9-9, B-1 
Notation, Pref'ace-v 
Notes and Cautions, Appendix C 
number, 2-7 

complex, I-I, H-lff 
numeric constant, 2-7, E-3 

Index 

Index-5 
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object 
keywords, Preface-vii, Appendix B-3 

object code, 1-2, G-l 
OFF, 5-4, B-5 
OGRAPH, 1-7,6-2,6-3, B-2, E-9 
omitted parameters 

in macro body (formal), 9-5 
in macro call (actual), 9-4, 9-6 

ON, 2-6, 5-4, B-5 
operands, 2-9 
operational amplifier, H-2 
operators, 2-8, B-1 
OR, 9-9, B-1 
ORIF, 9-11, B-5 
overflow, 7-4, C-l, H-l1, J-l 
overwrite, 8-5 

parallel-structured filter stages, H-14, H-15 
parameters 

design, 1-1,7-1 
file, 1-5 
macro: formal, actual, 8-6,9-3 

parentheses, 2-2, 2-8 to 2-10 
partial fractions in impulse response, H-2 
partial results, 1-5 
partition 

of poles/zeros, 2-10, 4-3, 4-4, E-6 
interpreted sequentially, 4-2 

on scales for graphs, 6-1 ff 
path name, 8-2, 8-6 
percent 

sign use in macros, 9-3 
used on YSCALE, 6-2 

period, 2-2, 2-3, 2-6, 3-2, 6-3, 9-1, 9-8 
PERROR, 1-13,7-1,7-2, B-4, J-3 
PHASE, 1-8,5-1,5-3,5-4, B-4, 1-3 
phase 

and group delay, 5-3 
desired output, 1-1 

PI, 1-8,2-4,2-9,4-2, B-1 
piecewise linear, 1-4 
Planes 

and coordinates, 4-1, 4-2 
changing via MOVE, 4-5 

plot 
last curve again, GRAPH 
new curve over last, OGRAPH 
screen size, see XSIZE 

plus signs, 2-2, 2-8,2-9 
in graphs, 1-7, 6-3 

POLE, 3-5,4-2 to 4-4,7-1, B-4 
pole 

coordinates, 4-1 
creation or destruction via MOVE, 4-4 
definition, 1-1,4-2 
duplication, 4-4 
error, 7-2, 7-3 
location, 1-1 
maximum number of, 4-2 
moving, 4-4 
numbering, 4-3 
of transfer characteristic, H-l 
real, 4-3 
removing, 4-3 

practical consideration, H-ll 

precision, 
extended, H-12, J-3 
single, 2-7 

precedence of operators, 2-8, 2-9 
primaries, 2-8 to 2-10, 7-1, E-6 
printer, Preface-i, 1-4, 8-2 
prompt character 

ISIS-II, 8-1 
SPAC20,1-2 
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within macros or compound commands, 
9-1 

propagation, 1-3, 1-4,7-1, Appendix J 
of carry, H-12 

PUT, 1-3, 1-12,2-6,7-3,8-5,8-6,9-1, B-3 
default objects, 8-4 

PZ, 1-6,4-3,4-4, B-4 

quadratic terms, H-l 
correspond to complex conjugate pole 

pairs, H-2 
question mark, 2-2 
quote, 2-2, 2-3, 9-4, 9-5 

radians, 2-9, 4-1, 4-2,5-3 
RADIUS, 2-9, B-1 

non-negative only, 4-2 
range 

of frequencies or time, see scales 
of polelzeros, see partition 

read-only, 2-4, 2-5, 3-2, 5-2 
REAL 2-9, B-1 
real polelzero 

defined, 4-3 
input/ output signal delays, J-2 
permit "real" components, H-l 
realization diagram, H-4 

redisplay, 1-4,6-3 
relational 

expressions 9-8, 9-9 
symbols 2-2,2-3,9-8 

remainder, see MOD 
REMOVE command, B-3, E-7 

complete form, E-7 
for macros, 9-7, E-ll 
for poles/zeros, Preface-v, 1-3,4-3 
for symbols 3-4 
message. 4-3 
see also simple sample session, 1-5ff 

removing objects 
summary chart, E-l 

RENAME, F-l 
REPEAT, 9-8, B-3, E-I0 
resolution, 6-2, 6-3 
restart of session, 1-5, 2-6 
Retrieving 

files of code or parametes, see 
INCLUDE 

review of analog filters, Appendix H 

S, H-l 
S & H, sample-and-hold 
sampled 

filters, 1-11, H-5, H-7 
polelzero, 2-6, 4-1 
signals, H-3 
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sampling 
interval TS, 1-3,2-5,6-1, H-8 
limitations, H-5 
rate, 1-3, I-II, 4-1,5-4, H-12, H-14, 

saturation. H-Il 
shown by asterisk, 6-2 

saving partial results. 1-3, 1-4 
sawtooth waveform macro 

definition. 11-2 
invocation, 11-7 

scalar keywords, 2-4. 2-5 
Scales, 5-1, 6-1 

changes, 6-3 
frequency, 6-1 
time, 6-1 
vertical, 6-2 

scaling, 1-3, 1-4,5-2,5-4,7-1 
and other considerations, H -11, 

Appendix J. 
screen 

size, 6-1 ff 
second-order (quadratic), H-l, H-2, 

H-5, see also stages 
semicolon, 2-2,3-1, F-l 
separator, 3-1 
sequence of use, 1-3 
set commands, 3-2, E-6 
show contents of a file, see DISPLA Y 
signal propagation, Appendix J 
sign-on messages, 8-1, F-l 
simple sample session, 1-5 to 1-20 
Simulator, 1-2, G-I 
SIN, 2-9, B-1 
single precision, 2-7 
sinusoid waveform 

in complex network analysis, H-l, 
H-4, H-5 

macros 
at user-specified frequency 

definition, 11-4 
invocation, 11-9 

from triangular waveform 
definition, 11-4 
invocation, 11-8 

slash. 2-2, 2-8, 2-9 
software installation, Appendix F 
SPAC20 files, F-l 
space, 2-2, 2-6, 3-1 
special-character usage, 2-2 

sequences as tokens, 2-3 
S-plane, I-I, 1-3,2-9,4-1, H-6 
SQR, 2-9, B-1 
stages, 1-3,5-4,7-1, J-l 

first and second order cascaded, 1-4, 
H-2, H-14, H-15 

in parallel, H-16 
STEP, 2-6, 5-1, 5-4, B-4 
strings, 2-2, 2-3, 8-3, 8-4,9-4 
submission 

of code to Assembler, 1-5, 
Appendix G 

of command to Compiler, 3-1 
SUBMIT, 3-1, 8-6 
suffix see constant, Preface-v, 2-7 
superimpose graphs, 1-4, 6-3 

symbolic 
constants, 1-3 
names, 1-4,2-3,2-6,7-1 
references, 2-6, 2-11, 3-2, E-4 
variables, 1-4, 2-6 

SYMBOLS, 3-4, 8-4, B-4 
symbol table, 2-6, 3-3 
symmetry of command syntax, 

Preface-iv 
syntax 

charts, Preface-v, Appendix E 
checking in macros, 9-7 
description in BNF, Appendix 0 
errors, 9-1, 9-13, K-l 

system constant, E-3 

tables 
macros, 9-2 
poleizero, 4-1 
symbols, 2-6, 3-3 

TAN, B-1 
temporary RAM used in coding equations, 

Appendix J 
terminating 

a command, 3-1 
a line, 3-2 
a macro, 9-2, 9-4, 9-8 
an interactive session, 8-2 

THEN, 9-11, B-5 
THROUGH, 2-10,4-3, B-5 
time 

response, 5-4, 6-1, E-4 
scale, 6-1, 6-2 

TO, 4-4, 4-5, B-5 
Token, 2-1, 2-3, 3-1 

partial, 9-3 
predefined, 2-4 

TPI, 3-4, B-2 
transfer 

function, 1-1 
factors, 1-1 

characteristic, H-l 
transforms, Preface-v, Appendix H 

Bilinear, 10-6, H-7 to H-9 
impulse invariant, H-5, H-6 
matched-Z, H-6 

triangular waveform macro 
definition, 11-3 
invocation, 11-8 

TRUE, 9-9, 9-11 
TS, 1-3, 1-11,2-1,2-2,2-5,2-6,4-1,4-4, 

5-1, 5-4,6-1, 6-2, B-4, H-14 
consequences, 4-1 

UBOUND, 3-3,5-1 to 5-3, B-4 
underflow, C-l, H-l1 
underline, 2-2 
upper and lower bounds, 5-2 
unit delay, H-9 

realization in 2920, H-lO 
UNTIL, 9-8 to 9-10, B-5, E-lO 

Index 

Index-7 



Index 

Index-8 

Up 
impulse, 5-4 
step, 5-4 

user names, 2-2, 2-6, 3-2 
utility commands, 0-4 

variable 
independent, computing of, 1-4 
names, 1-4,2-6,7-1 

WHILE, 9-8 to 9-10, B-5, E-lO 
WRITE, 8-3, B-3 
write over a file, see PUT 

XOR, 9-9, B-2 
XSIZE, 2-5, 3-3, 5-1,5-4,6-1 to 6-3,8-4, 

B-4 

YSCALE, 1-8, 6-2, 8-4, B-4, C-l 
YSIZE, 2-5, 3-3, 6-2, 6-3, 8-4, B-4 

Z, 4-2, 4-4, B-5 
ZERO, 3-5,4-2 to 4-4, 7-1, B-4 
zero 

coordinates, 4-1 
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creation or destruction via MOVE, 4-4 
definition, 1-1, 4-2 
duplication, 4-4 
error, 7-2, 7-3 
location, 1-1 
maximum number of, 4-2 
moving, 4-.:1 
numbering, 4-3 
of transfer characteristic, H-l 
real,4-3 
realization, H-2 
removing, 4-3 

Z plane, 1-1, 1-3,2-6,2-9,4-1, H-6 
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