

SP AC20 Compiler Design of Complex Digital Filters Used in the 2920

Some Practical Considerations

The procedures described above show how second order filter sections can be
realized. In selecting the gain for the filter, the user should consider the scaling of
the variables within the filter. Improper scaling can result.in a number of problems.

If the variables are very small, it is possible that the 25-bit word width will not
provide enough resolution, and significant truncation noise will be introduced.
Because a second order filter of this type may perform the equivalent of integrations
in which results are obtained by summing many small values, roundoff error can
occur in unexpected ways.

If the variables are scaled too large, overflow saturation may result, with behavior
very similar to that occurring in an analog circuit when the signals exceed the
dynamic range of the amplifiers. However, an additional consideration may be
important in 2920 realizations of second order sections. As coefficient products are
developed by series of additions and subtractions, intermediate values may be larger
than those finally obtained.

In general, it is necessary to provide sufficient margins when scaling input variables
to ensure that overflow saturation does not occur for intermediate values.
Sometimes the sequence of calculations can be ordered to minimize potential
overflow saturation.

A third method to prevent intermediate overflow saturation is to compute some
fraction of YO, restoring it to full value when it is transferred to Y 1, such as shown
in Figure 5. This of course adds some noise to the final output, lowering the
accuracy somewhat.

The coding generated by the SPAC20 Compiler is already ordered and scaled in this
manner to minimize overflow. The user must still address the issue of scaling for
input and for signals propagated from earlier stages.

r----0-
4A,_ x, A,-0 A'-cb

�-�-�-�-�-�-�-�-�-�-�-�~�~�-�-�-�-�-�-�-�-�-�-�-�-�~�

t
62/4

Figure H-S. Method for Preventing Intermediate Overflow 121533-38

H-ll

Design of Complex Digital Filters Used in the 2920 SP AC20 Compiler

H-12

(If overflow occurs, it will be when YO is increased and loaded to Yl.)

No additional instructions are necessary in general, because the extra multiplications
shown in Figure 5 can be performed by modifying the instructions of the original
realization.

When a filter consists of a cascade of second order sections, code can be saved by
performing any gain trimming calculations at just one point ih the cascade.
However, to maintain properly scaled variables, the gain for the inputs to each stage
should be adjusted by the appropriate power of two. The proper scaling factor can
be determined by evaluating the maximum gain from the input to each point in the
cascade, starting with the first stage. The gain for the input to that stage is adjusted
to ensure that the overall gain does not exceed unity at any frequency. After each
stage is adjusted, the process is repeated for the next stage. See Appendix J for more
details.

Very Low Frequency Fitters

As mentioned above, the processes occurring in the recursive second order section
are equivalent to integration. When very low frequency filters or filters with very
high Q's must be realized, even the 25-bit word width of the 2920 may not provide
adequate protection from truncation error. In some cases it may be possible to
reduce the clock rate (and therefore sample rate) which will reduce coefficient
precision requirements.

When other functions prevent reduction of the sample rate, or when the predicted
. value of clock rate must be lower than the minimum permitted by the 2920, alternate
programming techniques must be used. (The 2920 word size and the dynamic range
of the variables being processed establish a maximum ratio of sample rate to
frequencies of interest.)

For very low frequency filters, the effective sampling rate must be reduced or the
effective precision of the processor must be increased. One approach, extended
precision arithmetic, appears possible but cumbersome. When very low frequencies
are being used, the coefficients Bl and B2 approach very closely to the values +2 and
-1 respectively. By realizing t:he filter as shown in Figure 6, the small terms BI-2
and B2+ 1 are isolated from the large terms and scaled upwards by some power of
two. The equivalent multiplications may then be done using single precision, which
is converted back to extended precision by a 2-n scaling.

Extended precision arithmetic may be executed using masks derived from the
constants, or by conditional additions. In either case, carries generated by the low
order word are added to the high order word to maintain carry propagation., The
carries may be simulated in one of the high order bits of the low order word, tested
via conditional operations or masking, and then removed by masking or conditional
addition of a negative constant. Table II shows an extended precision add routine.

Table H-2. Extended Precision Add Routine (48 Bit Precision) Technique
Uses Simulated Carry at 2nd Bit From Left of Low Order Word

ADD YL, XL, ROO ; add low order word (25 bits + carry)

LDA TMP, YL, ROO ; copy word to temporary location

AND TMP, KP4, ROO ; mask off simulated carry bit

SUB YL, TMP, ROO ; clear carry from low order word

ADD YH, XH, ROO ; add high order words

LDA TMP, TMP, R13 ; move carry to right .

ADD YH, TMP, R10 ; add carry to high order word

SP AC20 Compiler Design of Complex Digital Filters Used in the 2920

'~.~-------CZ)~------------~
t

--1

Figure H-6. Very Low Frequency Filter 121533-39

When low frequency filters must be realized, it is in general more convenient to
reduce the sample rate rather than attempt to extend the precision of the variables.
The sample rate may effectively be reduced by using the conditional load operation
triggered by an oscillator run at a submultiple of the sample rate. The filter calcula­
tions go to completion every nth cycle. Such an oscillator can be realized by the
program shown in Table III.

; Oscillator

SUB OSC, K P1 , R05

LOA DAR, OSC, ROO

LOA OSC, KP3, ROO, CNOS

ADD OSC, KP3, R05, CNOS

; conditional filter implementation

LOA Y2, Y 1 , ROO, CNOS

LOA Y 1 , YO, ROO, CNOS

Table H-3

5 U b t r act con 5 tan t K P 1 from as C

mo vet 0 0 A R for s i g n t est

re-initiaLize if negative to

99 time 5 K P 1

de Lay occurs on lyon cyc ling

of osc i L Lator

; remainder of filter calculations are done unconditionally - result is valid
; only on cycling of oscillator

The filter code generation may be done with the SP AC20 Compiler by using the
effective sample rate. To use this filter at the normal sample rate, the output code
must be edited to add the CNDS operations to the delay realization.

,
A constant value is subtracted from a RAM location on each pass through the
program. If (and only if) that operation causes the result to be negative, the condi­
tion for re-initializing ~he oscillator is met. A conditional load operation restores the
oscillator to a positive value. Thus the oscillator cycles at a SUbmUltiple of a sample
rate (at 1/100 in the Table III example.)

H-13

Design of Complex Digital Filters Used in the 2920 SP AC20 Compiler

H-14

The filter itself is realized using the same equations as are used in any second order
section, with the exception that the delay realization operations i.e. loading YI to Y2
and YO and Y I, are performed only on those program passes which re-initialize the
oscillator. Because the oscillator calculations only produce re-initialization every nth
cycle, a sample rate has been achieved equal to the 2920 sample rate divided by n.

On occasion, it may be desirable to operate one or more stages of the filter at a
higher sample rate than that of the 2920. For example, it may be possible to use a
lower cost external anti-aliasing filter by sampling the inputs at a higher than normal
rate, and performing some of the anti-aliasing using a digital filter stage operating at
this higher rate. Subsequent processing of the data is performed at the nominal rate
of the 2920.

One means for achieving the higher sample rate it to use two copies each of the
sampling routine and the anti-alias digital filter section. Figure 7 shows the impact
on the external anti-alias requirements obtained by using the double sample rate
technique. External anti-alias requirements may also be reduced for 2920 outputs by
the use of interpolating digital filters, i.e. filters which compute values between
successive samples.

Interpolating filters may also be realized by operating a filter stage at twice the
sample rate by using two copies of the program withinin the 2920. There are two
options for the input of such a filter operating at twice the sample rate. The same
input sample may be used for both copies of the program, or one copy may use a
zero-valued input. The latter case resembles using an impulse source where the
former case is more like a sampled and held source. The methods produce somewhat
different frequency responses.

The SP AC20 Compiler can be coerced to produce code for this mixed sample rate
implementation. To accomplish this, set the TS to the faster rate (say 3 times the
2920 program loop rate) and, using the CODE command, generate code for the anti­
alias (low-pass) stages of the filter. Three copies of this code must appear in the final
program.

Then set the TS down to the 2920 program loop rate, and generate code for the
remaining stages of the filter. One copy of this code must appear in the final
program.

At this point, the filter responses which can be graphed and otherwise examined are
relatively accurate reflections of the true behavior, at least below half the slower
sample frequency. This assumes that the signals are transformed between the stages
using the impulse method (either true input or zero) as opposed to the hold method
(either true input or held true input).

In mo~t of the examples described above, a cascade of filter stages has been
assumed. However, when the impulse invariant transform is used, an alternate
realization could be found by expanding into a .sum of partial fractions, evaluating
the impulse response associated with each fraction, and realizing the output of the
filter as the sum of the section outputs. The resulting realization is shown in Figure
8b as opposed to the cascade structure of Figure 8a. In some cases, the parallel
structure may be less sensitive to variable scaling than the cascade structure.

SP AC20 Compiler Design of Complex Digital Filters Used in the 2920

EXTERNAL ANTI·ALlAS

t
r<JTER 1

BW fs·BW

a. Original spectrum showing bandwidth of digital processing.
External anti-alias filter must pass below BW, stop beyond fs-BW

t

EXTERNAL ANTI·ALIAS

~l_T_ER __ ~ ____ ~

Br~~t;=kht
INTERNAL
DIGITAL
FIL TER

b. Spectrum using double rate sampling.

t

External filter passes BW, stops beyond 2fs-BW, internal digital filter performs
rest of anti-alias function.

Figure H-7. Effects of Double Rate Input Sampling

Figure H-8a. Cascade Structure for Complex Filter
(Directly Derived From Matched Z or Bilinear Transform)

121533-40

121533-41

H-15

Design of Complex Digital Filters Used in the 2920 SP AC20 Compiler

~------------~~~-------------------.,

~I------"'I

x ..

'--------4 X ... ------,

Figure H-8b. Parallel Structure for Complex Filters
(May Result From Impulse Invariant Transform) 121533-42

H-16

I

• l APPENDIX I
FORMULAS USED BY THE

SPAC20 COMPILER
n

The formulas by which the filter response keywords are calculated are given below.
They depend upon s-plane or z-plane representation of the locations for poles and
·zeros. Three distinct graphs are used to indicate the quantities named in the
formulas for AGAIN, and four additional graphs are referred to by the formulas for
PHASE. Poles are indicated by the character X, zeros by O. The character a shows
the object's real part (or projection), b shows its imaginary part, and f indicates the
varying frequency of interest. These letters then appear in the formulas. For z-plane
graphs, R indicates the length of the vector from the origin to the pole or zero, and
theta (0) the vector's angle.

GAIN, MAGAIN, GERROR, and MSQE are defined in terms of AGAIN. GROUP
is the negative of derivative of PHASE with respect to frequency. The formulas are
shown in the simplest relation to the graphs. Simplification, grouping, and recom-·
bination of terms would in some cases produce more compact formulas, but their
meaning and relation to the positions of poles and zeros would be obscure. In some
cases, the result of such manipulations is in fact much more complex than the
original formulation, though it can have computational benefits for the efficiency of
a tool such as the 2920 Signal Processing Applications Compiler.

AGAIN

AGAIN

IT DIST;
z;

IT DIST;
p;

AGAIN is the ratio of two products: the product of all the distances of the zeros of
the filter divided by the product of all the distances of the poles of the filter, where
distance means the vector distance from the frequency in question (on the vertical"j
axis) to the position of the zero or pole (or complex conjugate of a pole).

S-PLANE
REAL POLE OR ZERO at -a

DIST(f)= -Jf2+a 2 where N
N

normalization factor
(1 + a)

121533-29 COM P L EX PO LEO R Z E R 0 a t (-a + j b), (-a - j b)

(,Ja 2 + (f - b) 2) (,Ja 2 + (f + b) 2)
DIST(f) = N

w her e the norma liz a t ion fa c tor N = (1 +~) 2

121533-30

1-1

Formulas Used by the SPAC20 Compiler SP AC20 Compiler

1-2

SAMPLED S-PLANE (sampled at T)

b
I

t

b
I

J

REAL POLE OR ZERO at -a

DIST(f) = 11-e-2rraT *e-j2rrfT I

121533-29 COMPLEX POLE OR ZERO at (-a + jb),(-a-jb)

DIST(f) = 11-(2e-2rraTcos2rrbT) e- 2rr jfT + e-4rraT*e-4rrjfTl

121533-31

Z PLAN E (sampled at T)

....... 1
R

REAL POLE OR ZERO at R, 0

DIS T (f) = I 1 - R e - j 2rrfT I

121533-32

COMPLEX POLE OR ZERO at R,0

DIST(f) = I (1-Re-j 0 e-j2rrfT) (1-Re+j 0 e-j2rrfT) I

121533-33

SP AC20 Compiler

GAIN (f) =

MAGAIN =

GERROR(f)

MSQE =

PHASE

Formulas Used by the SPAC20 Compiler

J AGAIN (f) I
20 LOG1Q \ GREF

unitsindB

GREF = gainat reference frequency
speci f i ed by use r

rna x { A G A I N (f ;)

f; in FSCALE

GAIN(f) - UBOUNO(f)

ifGAIN(f) > UBOUNO(f)

= GAIN(f) - LBOUNO(f)

ifGAIN(f) < LBOUNO(f)

= o otherwise

.... /1 N (GERROR(f,.»2
, N 2:

i =1

N = numb e r 0 f poi n t sin F S CAL E

f; in FSCALE

_ Lei - Lei (units are radians)
Zj Pj

S-PLANE

REAL

e = t a n- 1 f
a

COMPLEX

1-3

Formulas Used by the SPAC20 Compiler SP AC20 Compiler

1-4

SAMPLED S-PLANE (sampled at T)

REAL

e = ang le of (1-e- 2rraT . e-j2rrfT)

EeOfa+ib = tan- 1 ~I

COMPLEX

e = angle of 1-.2e-2rraT cos 2rrbT e- 2rr jfT + e- 4rraT.e-j4rrfT

Z PLANE (sampled at T)

REAL

(R.G)

e = ang L e of 1-Re-2jrrfT

121533-32

COMPLEX

e = ang Le of (1-Re- jEl e-j2rrfT) (1-Re+jEle-j2rrfT)

121533-33

GROUP DELAY:

I GROU.P(f~ = -1 dphase
. 2n' d f

With HOLD ON, AGAIN is multiplied by 1 sin(x)/x I, where x=TS*FREQ*PI
which causes GAIN to be corrected by adding 20 10glO 1 sin(x)/x 1 and PHASE to be
corrected by adding x. GROUP is corrected by subtracting TS/2.

With HOLD OFF, the above corrections are omitted.

APPENDIX J
SCALING AND OTHER

C'ONSIDERATIONS

Scaling

Each stage of a filter performs various arithmetic operations, which have the poten­
tial for causing overflow saturation if the numbers coming in are too large. Thus the
issue arises of scaling down such input to avoid inadvertent overflow. If the signal
input to the filter were a pure sine wave, then the peak AGAIN for each stage would
indicate how incoming signals needed to be scaled in order to avoid saturation or
overflow within that stage. That is, if the peak AGAIN under these circumstances
were 50 for stage 1, the next higher power of two should be used to scale the input.
Thus a right shift of six, equivalent to dividing by 64, would be the correct scaling,
e.g.,

LOA INPUT, OAR, R06

If the first two stages taken together indicated an AGAIN peak of 250, the input to
the second stage needs only an additional reduction factor of 4, i.e., rightshift 2, as
part of the scaling has already been done at the input to the first stage. Successive
stages repeat this reasoning, using the cumulative effect (product) of all earlier scal­
ing factors to determine what, if any, additional scaling is needed. (Note: set HOLD
OFF when using AGAIN to determine scale factors, since the HOLD compensation
really does not affect the signal until it leaves the 2920 chip.)

Because inputs are limited to the range plus-or-minus 1.0, the largest possible
instantaneous output of a filter may be found by integrating the absolute area over
the impulse response of the filter. In general this value is unnecessarily conservative,
and may result in excessive truncation error.

Even assuming this input scaling has been performed, it is possible that intermediate
calculations within a filter stage will cause overflow. For example, warning messages
produced by the Compiler in the code may say, e.g.,

II ;NOTE: MAKE SURE SIGNAL IS <0.547 11

indicating such intermediate overflow will occur unless the expected maximum out­
put signal amplitude is less than 0.547.

If the input to a stage is scaled so that the expected maximum output signal is less
than 0.25, such intermediate overflow cannot occur (for poles and zeros within the
unit circle on the z-plane).

As a rule of thumb, it should be sufficient to use four times the MAGAIN (rounded
up to the next power of 2) as the scaling needed for each stage. That is, the user
should ensure that the scaling before any stage is at least four times the MAGAIN
due to the combination of all previous stages and the present stage under
consideration.

During the coding process, if ~l is implemented first in the coding, a warning
message will appear, advising the user to keep the signal below a certain level. If the
above scaling factor of four times MAGAIN has already been performed, then the
purpose of these messages has already been accomplished.

1-1

Scaling and Other Considerations SP AC20 Compiler

J-2

Signal Propagation

In the code output from the SPAC20 Compiler, you will find, usually once per
module, an ADD or LDA instruction using names like INO, INl, followed by the
stage label, e.g., INO_Zl for zero 1. These are the instructions which must be
replaced using the correct scaling and appropriate input source, which depends on
the sequence and combination of poles and zeros, as follows:

The table below indicates the number of inputs and outputs for the four kinds of
poles and zeros. A complex pole takes in one signal and produces three output
signals, whereas a complex zero uses three inputs and produces one output. A real
pole has one input and two outputs, while a real zero takes in two signals and
outputs one.

(using hypothetical poles and zeros labeled 3 (for complex) and 2 (for real).

Input Signal Output Signal
Signals Delay Signals Delay

Complex Pole INO_P3 Signal Input, OUTO_P3 Signal Input,
not delayed not delayed

OUT1_P3 Delayed 1 sample
interval

OUT2_P3 Delayed 2 sample
intervals

Real Pole INO_P2 Signal Input, OUTO __ P2 Signal Input,
not delayed not delayed

OUT1_P2 Delayed 1 sample
interval

Complex Zero INO_Z3 Signal Input, OUTO_Z3 Signal Input,
not delayed not delayed

IN1_Z3 Delayed 1 sample
interval

IN2_Z3 Delayed 2 sample
intervals

Real Zero INO_Z2 Signal Input, OUTO_Z2 Signal Input,
not delayed not delayed

IN1_Z2 Delayed 1 sample
interval

Merging Code for Poles and Zeros

From the table it is easy to perceive the proper meshing of the code for a complex
pole followed by that for a complex zero:

I N 0_ Z 3 E QUO U TO _P 3

IN1_Z3 EQU OUT1_P3

IN2_Z3 EQU OUT2_P3

This provides the correct, suitably delayed pole output signals to the appropriate
zero inputs. Similarly, to merge the code for a real pole followed by a real zero, you
can use

INO_Z2EQU OUTO_P2

IN1_Z2 EQU OUT1_P2

SP AC20 Compiler Scaling and Other Considerations

If, however, a complex pole is followed by a real zero, then as the table indicates you
must select the pole output with the correct delay, i.e.,

INO_Z2 EQU OUTO_P3; no de lay

IN1_Z2 EQU OUT1_P3; delay

A complex pole followed by two real zeros cannot be directly merged. The first zero
can be merged with the pole as above. Then the signal needs to be propagated to the
second real zero (here labeled Z22). For example, the code below

INO_Z22 EQU OUTO_P3

LOA IN1_Z22, INO_Z22

will accomplish this for a real zero. An equivalent method in the real case is to create
a pole at O,O,Z and then merge it with the zero. For a complex zero, the code below
should be used:

INO_Z3 EQU OUTO_P3

LOA IN2_Z3, IN1_Z3

LOA IN1_Z3, INO_Z3

Use of Temporary RAM Locations

The coding for equations of the form YY = C*YY is only optimal assuming no
scratch RAM locations are to be used. You can often improve it by the simple expe­
dient of coding in two steps, first saying

COOEXX=1.*YY

and then, after saving that code, enter CODE YY = C * XX. Using XX as a scratch
variable in this way can.be a useful technique.

If more than 16 bits of precision is needed in constants, say in PERROR or ERROR
constraints, the code produced with the standard SPAC20 algorithms may suffer.

COOEYY= (1 +1/2**17) *XXERR<O

is an example. Five instructions are generated where 3 could suffice. One way
around this is to code in several steps, e.g.,

CODE YY = C*XX ERR< (1/2**13)

DE FINE • ERR 0 R $ $ S A V E R = ERR

CODE XTMP = (1/2**13) * XX

CODE Y Y = (• ERR 0 R $ $ S A V E R * 2 * * 13) * X T M P + yy ERR < (1 /2 * * 1 0)

This effectively combines coding for the top 13 bits and for the least significant 13
bits.

J-3

APPENDIX K
ERROR MESSAGES AND

CORRECTIVE ACTIONS

Error conditions encountered by the SPAC20 module cause a numbered error
message to print on your console.

Since commands are read on a line-by-line basis, the Compiler will not flag any error
until after an entire line has been entered. When the first command error is found,
command processing stops and the offending line has no further effect on any
internal variables.

If a syntax error is encountered by the Compiler during a multi-line compound
command, the error is reported and the line is ignored. Whenever possible, the lines
already successfully entered in the compound command are kept and input may
resume. Sometimes the compiler finds it impossible to do so and in this case the
entire compound command is lost. The prompt for the next input line indicates
which of these options was selected: " *" indicates continued compound
command input; "*,, indicates new command input.

Errors during compound command execution will terminate processing, leaving the
compile-state intact as of the last successfully completed command.

Error numbers CO to CF are warnings of conditions which are probably undesired.
These warnings do not terminate compound command processing.

The following list of error messages does not include those which can come directly
from ISIS-II. These appear in a separate list after the Compiler's messages.

In some rare cases, the error number may be printed without its associated message,
asin

ERR80: ?

This means an Error 80 was detected but some other (probably unrelated) problem
prevented the Compiler from printing the message, e.g., error message file
SPAC20.0VE is missing.

ERR 71:

ERR 72:

ERR 73:

ERR 74:

ERR 75:

ILLEGIBLE NUMBER

HELP FILE MISSING

SAMPLE RATE UNDEFINED

GREF AGAIN ZERO

NEGATIVE RADIUS

A floating point number input cannot
be deciphered.

The help file SPAC20.0VH is missing.

TS has not yet been assigned. TS
must be assigned a nonzero postive
value before sampled poles and
zeros can be created or before IM­
PULSE or STEP responses are ex­
amined.

The frequency specified in the GREF
has absolute gain zero and this can­
not be used as a reference level.
Select a different GREF frequency.

Poles or zeros defined in the Z-plane
must have positive radius. A negative
radius is equivalent to a positive
radius with an angle offset of 180 0 =rr

radians.

K-l

Error Messages and Corrective Actions

ERR 76: POLE/ZERO NOT SAMPLED

ERR 77: CONSTRAINT TOO SEVERE

ERR 78: ANGLE> PI OR <= -PI

ERR 79: EXTRA CONTIN UOUS ZEROS

ERR 7A: ILLEGAL CODE COMMAND

ERR 7B: INTEGER NEEDED

ERR 80: SYNTAX ERROR

ERR 81: ~ INVALID TOKEN

ERR 83: INAPPROPRIATE NUMBER

ERR 84: PARTITION BOUNDS ERRQR

ERR 85: ITEM ALREADY EXISTS

ERR 86: ITEM DOES NOT EXIST

K-2

SP AC20 Compiler

A pole or zero must be sampled
before code can be generated. Move
it to the TS or Z planes.

The pole or zero or multiplication
cannot be coded within the instruc­
tion constraint specified. Try relaxing
the INST constraint.

Poles or zeros in the Z-plane must
have angle between ±rr. Take the
desired angle mod 2rr to obtain this.

The STEP or IMPULSE time
responses cannot be calculated
because there are more continuous
zeros than continuous poles. Such a
combination cannot be physically
manifested.

The code command issued does not
exist, e.g., CODE Y = 1 *X + Z.

An integer valued expression is
needed in context e.g., POLE 1.5.

The token flagged is not one that is
allowed in the current context.

The token flagged is illegal because it
does not follow the rules for a well­
formed token. The line is ignored and
you must re-enter your intended
command. Check the correctness of
the syntax and variable-names used.
A string longer than 255 characters
can result in this error.

The value printed on the preceding
line is not appropriate in the current
context. Some contexts allow only
certain numbers, e.g., TS must be
positive.

The partition values entered in a
command are not correct. Either the
left part of the partition is greater than
the right part, or the values of the
partition extremes are out of range in
the current context. For example,
Poles 3 thru 2.

The symbol or macro entered in a
define command is currently defined
in the symbol or macro table. You
may need to validate the curr~t

usage of this symbol or macro, or
perhaps merely use a different spell­
ing to maintain the distinction.

The item printed on the preceding
line does not reside in the symbol
or macro table. It may have been
removed in an earlier test session,
or it may be in a change you haven't
inserted yet.

SP AC20 Compiler

ERR 90: MEMORY OVERFLOW

ERR 91: STACK OVERFLOW

ERR 92: COMMAND TOO LONG

ERR 94: NON-CHANGEABLE ITEM

ERR 90; LINE TOO LONG

ERR AO: TOO MANY PARTITIONS

ERR B9: NO HELP AVAILABLE

WARN C8: F.P.INVALID OPERAND

WARN C9: F.P. OVERFLOW

WARN CA: F.P. UNDERFLOW

WAR CB: F.P. ZERO-DIVIDE

WARN CC: F.P. DOMAIN ERROR

Error Messages and Corrective Actions

Either too many poles and zeros have
been defined (more than 20), or too
many macros or symbols have been
defined or some other internal buffer
size has been exceeded. If the
message

MEMORY RECLAIMED

appears on the next line, success
may be obtained by simply reissuing
the command which caused the
original overflow. Before doing so it is
recommended to delete any unused
symbols or macros first.

The capacity of a statically allocated
internal stack has been exceeded.
This is probably due to an exces­
sively complicated command, e.g.,
one with 20 parenthesis pairs. An
example would be

DEFINE .DAR$SAVED =
(((((((((((((((((DAR)))))))))))))))))

Too complicated a command due to
number of operators, most probably,
asin

DEFINE .TEMPFUNC =

1+8*9-7/44*

out to many operators. Break it up in
several smaller commands.

An attempt to alter a read-only item,
e.g.,INST.

Command line was longer than 122
characters.

An fscale or Ibound or ubound has
been specified with more than the
maximum number 10 of piecewise
linear segments.

Help has been requested for a help
item which has no help message.

The program tried to use a value
resulting from an underflow or
overflow condition. If this message
persists, try flushing the Compiler's
internal storage with the command
XSIZE = XSIZE.

A value larger than 10 times the
largest allowable number occurred in
some expression.

A value smaller than the smallest
allowable number occurred. One
example is 1/Iargest#.

Dividing by zero was attempted.

One example would be the square
root of a negative number.

K-3

Error Messages and Corrective Actions SP AC20 Compiler

K-4

The last five warnings are flagged during command execution due to an
inappropriate action or result for a floating point operation. See the documentation
for the FORTRAN floating point libraries for further details.

ERR E7:

ERR E8:

ERR E9:

ERR EF:

ERR FO:

ERR F1:

ERR F3:

ERR F6:

ERR F9:

ERR FA:

ERR FH:

ILLEGAL FILENAME

ILLEGAL DEVICE

FILE OPEN FOR INPUT

FILE ALREADY OPEN

NO SUCH FILE

WRITE-PROTECTED FILE

CHECKSUM ERROR

DISKETTE FILE REOU IRED

ILLEGAL ACCESS

NO FILE NAME

NULL FILE EXTENSION

The filename specified does not
conform to a well-formed ISIS
filename. See ISIS Manual for valid
formulation and device labels.

Illegal or unrecognized device in
filename. An invalid device label was
used, e.g., :DO: instead of :CO, or
something unrelated such as :PO:.
See ISIS Manual for valid list.

Attempt to write to a file open for
input, e.g., PUT :CI:, a file predefined
as console input.

Attempt to open a file that was
already open.

The file specified does not exist.
Possibly a wrong or missing device
label, as in typing :F2:FILE when you
meant :F3:FILE, or a file missing due
to forgetting to copy it onto a new
disk.

The file named for output is
write-protected and cannot be over­
written.

An overlay file cannot be loaded
because it has become trashed.

A file was referenced which needs a
diskette.

Attempt to open a read-only file for
the purpose of storing data (e.g.,
specifying :CI: as the list device) or to
open a write-only file as a source of
data (e.g., :LP: in an include
command).

No filename specified for a diskette
file (e.g., no filename following :F2:).

An expected filename extension was
not found (e.g., :F2:FILT.).

abbreviations, 2-4, F-2, Appendix B
ABS, B-1
accuracy of code, 7-4

see also precision
ACOS, B-1
actual parameters, 9-3
add to a file, see APPEND
adders, H-3
advanced techniques

pertinent to filters, Chapter to
re other signal processing, Chapter 11

AGAIN,I-18, 2-5,5-1,5-2,5-4, B-3,
I-I, J-l

alias, 4-5
All-pole filter coding

example macro, to-9
resulting file, to-14

ampersand, 2-2, 3-1, F-l
amplitude

desired output 1-1
and phase information in complex gain,

H-l
analog filters, H-l
analog-to-digital, 1-4, G-l

see A-to-D
AND, 9-9, B-1
ANGLE, 2-9, B-1
apostrophe, 2-3, 6-3, 9-4, 9-5
APPEND, 1-3,2-6,7-3,8-4,8-6,9-1, B-2

default objects, 8-4
arithmetic expression, 2-8, 4-2, E-5
ASCII,2-2
ASIN, B-1
Assembler, 1-2,7-1

code submission to, Appendix G
options, G-2
tasks before invoking, G-l

asterisk, 1-2,2-2,2-8,2-9,3-1,6-2,8-1,9-1
see also double-asterisk,

AT, 5-1, 5-2, B-4
at-sign, 2-2
ATAN, B-1
A-to-D conversion macro,

definition, 11-3
invocation, to-tO, 11-6

attenuation, 6-2
AUTO, 6-2, B-4, C-l
avis, second-stage ariel evolution,

band-limited signal reconstruction, H-3
best yet code, 7-1
bibliography, Preface-iv, 1-2,2-7, F-l
Bilinear transform

equations, Appendix H-7
example use in design, H-8
macro, to-6

binary constant, 2-7, E-3
BNF (Backus Naur Form), Appendix D

INDEX

boolean
expressions, 9-9
operators, 9-9

BOUNDS, 5-2, B-3
bounds

on error,
maximum re gain, 7-1 to 7-3
mean square re gain, 7-1 to 7-3
movement re poleizero, 7-3

on gain, 1-3
invalid specifications, 5-3
lower, 5-2, 5-3
upper, 5-2, 5 .. :3

buffer
for code, 7-1,8-4,9-6
for graphics, 6-3

Butterworth filter macro, to-2
BY, 4-4, B-4

canonical forms of digital filters, H-3
carriage-return, 2-2, 3-1, 9-4, F-l
cascaded stages, 1-4, H-2, H-12, H-14,

H-15
change

commands, 3-2, E-6
of plane via MOVE, 4-5
see also 1-5ff

changeable scalars, 2-4, 2-5
character

set, 2-2
strings', 2-3

charts, Appendix E
Chebyshev filter

macro, 1-9, to-4
used, 1-10

CODE, 1-1,2-5,7-1, B-2, E-9
code

accuracy, 7-4
and ESC, 7-1
buffer, 7-1,9-6
compaction, 1-4, Appendix J
constraints, 1-4, 7-1
editing, 1-4, G-l
for equations, 7-4
for poleizero~ 1-3, 7-2
general signal processing, 1-3, Chapter 11
generation, 1-1,1-4, 1-5,7-1
merging, Appendix J
object, 1-2
review, 1-4, 7-1
revision, 1-4, G-l
submission to 2920 Assembler,

Appendix G
using temporary RAM locations,

Appendix J
coefficients determine filter behavior,

H- 3ff
closely approximated in 2920, H-tO

Index-l

Index

Index-2

colon
in device names, 8-2
to invoke macros, 9-2, 9-3

comma, 2-1, 2-3, 3-1,4-2,5-2,7-1,9-4,9-5
commands, D-l, E-2

and tokens, 2-1
block, 9-1
code, 7-1, E-9
change, 3-2, E-6
compound, 1-5,9-1 ff
display, 3-5, E-8
entry, 3-1
file, 8-1, E-9
graph, 6-3, E-9
line continuation, 2-2, 3-1
poleizero, 4-1 to 4-5, E-7
sequences, 9-1 ff
simple, 2-4, 3-1
symmetry, Preface-iv

comments, 3-1
in code, 7-1
into file, 8-4, 9-6

compaction of code/program, see code
Compiler

differences, Preface-iv
interaction with other products,

Preface-ii
introduction, 1-1
uses and purposes, Preface-iii, 1-1,7-1

complex
frequency, 1-1
network, H-l
numbers, 1-1
pole/zero

defined, 1-3,4-3,4-4
input/output signal delays, 1-2
realization diagram, H-4

valued graph, 1-1
variables, H-l, H-5

compound commands, 1-5,9-1 to 9-13, D-4
conditional, 9-11, 9-12
iteration control, 9-8 to 9-10
macros, 9-1 to 9-7

Concepts of filter design, 1-1
conditional

execution, 9-11
expression, 9-8 to 9-10

configuration, Preface-iii
conjugate

complex numbers, H-l
pole pairs, 1-3,4-3, H-l

conjunction
bit-wise integer, see MASK
logical, see AND

console, 1-4, 1-5,2-5,6-2,8-2,8-3,9-7
constant

binary, 2-7, 2-13
decimal, Preface-v, 2-7, 2-13
hexadecimal, Preface-vi, 2-7, 2-13
in coding equations, 1-4, 7-1, 7-4
keywords, B-1
numeric, Preface-vi, 2-7, 2-11, E-3
suffix, 2-7
symbolic, 1-3, 1-4,2-6
system, 2-4, 2-11, E-3

constraints
default, 7-2
on coding, 1-3, 7-lff
too severe, 7-1, 7-3

CONTINUOUS, 4-1, 4-2, 4-4, 4-5, B-4
continuous

filters, 1-1,4-1, H-5
compared to digital, H-6

poles/zeros, 1-3,4-3,5-2
contribution to inaccuracy of time

responses, 5-4

SP AC20 Compiler

s-plane, 1-1, 1-3,2-4,4-1, H-6
controlling a loop, see REPEAT, COUNT
convolution, H-2

approximation, 5-4
coordinates

as primaries, 2-9, 2-12, E-5
polar (z-plane), 1-3,4-1,4-2
rectangular (S, TS planes), 1-3,4-1,4-2

copy
allIlO to a file, see LIST
files, F-l
state or macros from a file, see

INCLUDE
corrective actions for error messages,

Appendix K
COS, B-1
COUNT, 9-8, E-lO
CR, carriage return
create,

a file, see PUT or APPEND
objects or symbols, see DEFINE

cursor controls, 1-4

dash,6-3
dB, decibels, as in G REF
DC, direct current, as in GREF
dead band, C-l
decimal

constant, 2-7, E-3
point, Preface-v

DEFINE command, B-2, E-7
complete form, E-7
for macros, 9-2, E-ll
for polesizeros, 4-2
for symbols, 3-3
see also sample session, 1-5ff

Defining
a filter, 1-3
macros, 9-1, 9-2, E-ll
poles or zeros, 1-3,4-2
summary chart, E-l
symbols, 2-6, 3-3
your own commands, 1-5, 10-1

definitions for keywords, Appendix B
delimiter, 2-2
design,

filter, 1-1
review, Appendix H

device names, 8-2
digit, Preface-v, 2-2, see constant
digital

filtering, H-3

SP AC20 Compiler

filters, canonical forms, H-3
diagrams, H-4

signal
processing, Preface-iv, Appendix H

digital-to-analog, 1-4, G-l
DIR MACRO, 9-7, B-2, E-ll
disjunction

exclusive, see XOR
inclusive, see OR

diskette
drive, 8-2
file, 8-2, 8-3, 8-6

DISPLAY, 8-4, 8-5, B-2
display

commands, 3-5, E-8
from any table, summary chart, E-l
macros, 9-7, E-ll
of code, 7-1
of file, 1-5,8-4
of filter responses, 1-4
of object values, 2-4, 3-4
see also simple sample session, 1-5ff

display text string/expression, with copy to
List file, see WRITE

distortion
correction via HOLD, 5-4
from output Sand H, 5-4

division
macro

definition, 11-2
invocation, 11-5

operator, 2-8, 2-9
documenting a session using

comments, 3-1, and
LIST, 8-3

dollar-sign, 2-2, 2-7
don't care conditions

effect on CODE, 5-3
in bounds, 5-2, 5-3

double-asterisk
showing continued input line, 3-1
("to the power"), 2-8

doubling the sample rate, 4-1, H-14, H-15
drivename, 8-1, 8-2

e,2-9
editing

code after generation, for assembler
submission, 1-4, G-l

commands at console, 3-1
macros, 9-2

ELSE, 9-11
EM, 9-2, 9-7
END, 9-8, 9-11, 9-12
Entering commands, 3-1
equal sign, 2-5, 3-2, 3-3,4-2
Equations, coding, 7-4
ERROR, 2-5, 7-1, 7-4, B-3, 1-3

default, 7-4
error

bounds on gain, 1-4, 7-2
constraints, 7-1 ff

ERROR
MERROR
MSQE
PERROR

messages and corrective actions,
Appendix K

on read-only, 3-2
on undefined or already defined symbol,

3-3
Escape key, 1-5, 1-7,2-2,7-1,8-4,9-4,9-8,

F-l
EVALUATE, 1-8,3-4, B-2
execute

command block
conditionally, see IF, WHILE, UNTIL
forever, see REPEAT
number of times, see COUNT

commands from a file, see INCLUDE
EXIT, 1-3, 1-20,8-2, B-2, F-2
exit clauses, 9-8 to 9-11, 9-13
EXP, 2-9, B-1
exp, expression
expansion of macro, 9-7

valid commands in, 9-5
exponentiation

limitation, C-I
number raised to a power, **,2-8,2-9
of natural base e, EXP, 2-9

expressions, 2-12,4-2,4-4, 5-1, 6-1, 6-2,
7-1,8-3,9-9,9-10, E-5
arithmetic, 2-8, E-5
boolean, 9-9
evaluation, 2-8, 2-9
integer, 2-8, 4-2, E-5
logical, 9-9
relational, 9-8

extending
precision, H-12, 1-3
the language, 1-5, 10-1

extension to filename, 8-2

FALSE, 9-9, 9-11
features of the Compiler, Preface-i
file

commands, 8-1, E-9
handling, 8-1 to 8-6
names, 8-2
temporary macro, 9-1

filing and retrieving 1-4, 8-4 to 8-6
filter

analog, 5-4, H-l
continuous, 1-1
design, 1-1

commands, 0-2
review, Appendix H

digital; 1-1, H-l
examples of advanced techniques,

Chapter 10
implementing, 1-1, H-9
low frequency, H-12
response functions, 5-4
response keywords, 5-1

factors used, 5-4
responses, 2-12
sampled, 1-1, 1-11, H-5, H-7

FIR filters, C-l
first -order, see stages
fixed frequency vs. geometry, 4-1

interaction with sample-rate and
implementation, 4-1

Index

Index-3

Index

Index-4

floating point, 2-3, 2-5, 2-7, 2-9,3-3
limitations, C-l

flow of control, 3-1; see compound
commands

formal and actual parameters, 9-3, 9-7,
10-1

formulas, Appendix I
fraction, Preface-vi, 2-7
frequency

and plane and sample-rate, 4-1
for BOUNDS, 5-2
for·GREF,5-1
in FSCALE, 6-1
range of interest, 1-4, 6-1, 6-2
response, 1-4, E-4, Chapter 5

functions, 2-9
keywords, 5-1

scale, 5-3, 6-1
FSCALE, 1-6, 2-5, 3-3, 5-1 to 5-4, 6-1, 8-4,

B-3
full DEFINE and REMOVE, E-7
functional categories, Preface-iv
Functions, 2-4, 2-11, B-1, E-4

of filter response, 5-1

GAIN, 1-6, 1-7,5-1,5-4, B-3, 1-3
gain

absolute, 5-2
maximum, 5-2

characteristic, 1-1
deviation from bounds when coded, 7-2
from individual pole, 5-2
reference, 5-1

generation
of code, 1-4,7-1 to 7-4
of graphs, 6-1 to 6-3
of listings, 8-3

geometry
re frequency, sample rate, and choice of

plane, 4-1
GERROR, 5-1, 5-3, 6-2, B-3, 1-3
GRAPH, 1-4,6-2,6-3, B-2, E-9
graphable keywords, 5-1
graph commands, 6-3, E-9
graphics

area, 6-2
buffer, 6-3
capability, 6-1
characters, 6-3
resolution, 6-2, 6-3

graphs, 1-3, Chapter 6
see also simple sample session, 1-5ff

GREF, 1-6,5-1,8-4, B-3, 1-3
restriction, 5-2

GROUP, 5-1, 5-3,5-4, B-3, 1-4

hard-copy, Preface-i, 1-4,6-3
hardware configuration for SPAC20,

Pref~ce-ii
HELP

messages, 1-2, 1-5, Appendix A, B-2,
E-2, F-l

hertz, 4-1, H-7

hexadecimal
fraction with leading zero, 2-7
number, Preface-vi, 2-7, E-3

hidden spikes, 5-2, 5-3
high-frequency

SP AC20 Compiler

continuous pole/zero inaccuracies, 5-4
droop from sample-and-hold, 5-4

HOLD, 1-18,2-6,5-4,8-4, B-2, 1-4, J-l
HPI, 2-4, 2-9, B-1
Hz, hertz, revolutions/cycles per second,

see also H-7

identifier, 2-3, 7-1
filename, 8-2

IF, 9-11, B-2, E-1O
lIR filters, C-l
IMAG, 2-9, B-1
implementing filters with the 2920, 1-4, H-9
IMPULSE, 2-6, 5-1, 5-4, B-3
Impulse response

achieved by network, H-5
analysis, H-2, H-3

INCLUDE, 1-5, 1-9,2-6,8-6,9-1,9-2, B-2
input line

continuation, 3-1
length, 3-1, F-l

input/output names for poles/zeros, J-2
input to assembler, 1-4, Appendix G
INST, 1-12,2-5,7-1, B-3

default, 7-2
installation procedure, Appendix F
integer, 2-5

expression 2-8,4-2,4-3, 9-8, 9-9, E-5
interactive

design sessions, 1-1
manipulation, 1-1
sample session, 1-5 to 1-20

interface
with ISIS- II 8-1, 8-6, Appendix F

interrogation commands, 0-4
interrupted session restart, 1-4, 8-6
interrupting any command, see ESCape
invalid numeric constants, 2-7
invoking macros, 9-2, E-ll
iSBC-31O, Preface-iii, iv, F-l, C-l
ISIS-II, Preface-iii

installing SPAC20 under, Appendix F
interface, 8-1
loading, F-2 .

iterative processes, 1-5

keyboard calculator, 3A
Keywords, 2-3, 2-4, Appendix B

commands, B-2, E-2
constants, operators, and functions,

B-1, E-3, E-4
gain-related, 5-1
filter response, 5-1
modifiers, B-4
objects, B-3

keyword references, 2-5, 2-6, 2-11, D-2, E-4

label of pole/zero, 4-2
language elements, 2-1

SP AC20 Compiler

Laplace transforms
used in impulse response analysis, H-3

LBOUND, 5-1 to 5-3, B-3
leading zero, 2-7
limit

on characters in identifier, 2-3
on partitions in

BOUNDS, B-3
FSCALE, 6-1

limit cycles, C-l
linear, 1-1, H-3
line-editing characters, 3-1, 3-2
line-feed,3-1
line printer, Preface-ii, 1-2
LIST, 1-2, 1-5,6-3,8-3, B-2
listing

all input/ output, 8-3
help messages, 1-2
to file, console, printer, 8-2, 8-3

locating poles and zeros, 4-1
LOG, 2-4,2-9, B-1
logic

conditional control, 9-1, 9-11, 9-12
of iterations, 9-8 to 9-10

operators, 2-3, 9-9
loop, 9-8

in macro invocation, 9-3
using compound commands, 9-8 to 9-10,

9-13, E-I0
low frequencies, 1-3, H-12
:LP:, 1-2,8-2

MACRO, 8-4, 9-7, B-3, E-II
macro

body, 9-1
command functions, 9-1
defining, 9-2
directory, 9-7
displaying, 9-7
editing, 8-6, 9-2
error checking, 10-1
expansion, 9-7, 9-8, 11-4
file, 9-1
in loop, 9-8
invoking, 2-3, 9-1, 9-2,11-4
library, 8-6
models, 9-2 to 9-6, Chapters 10 and II
names, 9-2, 9-7
parameters, 2-3, 9-1, 9-3
removing, 9-7
strings in, 9-4
syntax checking, 9-1, 9-7
usage, 1-3, Chapters 10, II
used under SUBMIT, 8-6

macros, Preface-iii, 9-1, Chapters 9-11,
0-5, E-II
filter, see

All-pole coding
Bilinear
Butterworth
Chebyshev

other signal processing, see
A-to-D conversion
division

multiplication
sawtooth
sinusoid
traingular

supplied-file, F-I
MAGAIN, 2-5,5-1,5-2,6-2, B-3, 1-3, J-I

hidden spikes, 5-2
manuals

reference, Preface-iv, 1-2,2-7, F-I
mapping to Z plane, 1-3, H-6, H-7
MASK, 2-8, 2-9, B-1
matched-z transform, 4-1,4-5, H-6
math board, see iSBC
maximum

absolute gain, 5-2
gain error, 5-3

mean-square-error, 1-4,5-3,7-1 to 7-3
merging code for poles and zeros,

Appendix J
MERROR, 2-5, 5-1,5-3,6-2,7-1 to 7-3,

B-3
minima and error constraints, 7-1,7-4
minus, 2-3, 2-8, 2-9
MOD, 2-8, 2-9, B-1
modifiers, 2-4, B-4
modules of code, 1-4
MOVE, 4-4, B-2, E-7

see also 1-5ff
movement of poles or zeros

as a constraint on coding, 7-1, 7-3
by command, 1-3,4-4
due to approximate coding, 7-1, 7-3

MSQE, 2-5, 5-1, 5-3,6-2, 7-1 to 7-3, B-4,
1-3

multiplication
conversion into 2920 ADDs and SUBs,

H-1O
macro

definition, 11-1
invocation, "11-4

operator, 2-8, 2-9
multiplier, 7-1, 7-4, see also constant

in digital filter block diagram, H-3ff

Names
device, 8-2
file, 8-2
ISIS-II, 8-2, F-I
of signal values in code, 1-14,7-1,10-12,

10-14, 10-15, 11-8, 11-10
see also keywords, Appendix B
symbolic, 1-4,2-3,2-6, 7-1
system constants, E-3
user, 2-2, 2-6

natural base e, 2-9
nesting compound commands, 9-12
non-scalars, 2-5
non-changeable scalars, 2-4
normalization, 1-2,5-1,5-4, I-I
NOT, 9-9, B-1
Notation, Pref'ace-v
Notes and Cautions, Appendix C
number, 2-7

complex, I-I, H-lff
numeric constant, 2-7, E-3

Index

Index-5

Index

Index-6

object
keywords, Preface-vii, Appendix B-3

object code, 1-2, G-l
OFF, 5-4, B-5
OGRAPH, 1-7,6-2,6-3, B-2, E-9
omitted parameters

in macro body (formal), 9-5
in macro call (actual), 9-4, 9-6

ON, 2-6, 5-4, B-5
operands, 2-9
operational amplifier, H-2
operators, 2-8, B-1
OR, 9-9, B-1
ORIF, 9-11, B-5
overflow, 7-4, C-l, H-l1, J-l
overwrite, 8-5

parallel-structured filter stages, H-14, H-15
parameters

design, 1-1,7-1
file, 1-5
macro: formal, actual, 8-6,9-3

parentheses, 2-2, 2-8 to 2-10
partial fractions in impulse response, H-2
partial results, 1-5
partition

of poles/zeros, 2-10, 4-3, 4-4, E-6
interpreted sequentially, 4-2

on scales for graphs, 6-1 ff
path name, 8-2, 8-6
percent

sign use in macros, 9-3
used on YSCALE, 6-2

period, 2-2, 2-3, 2-6, 3-2, 6-3, 9-1, 9-8
PERROR, 1-13,7-1,7-2, B-4, J-3
PHASE, 1-8,5-1,5-3,5-4, B-4, 1-3
phase

and group delay, 5-3
desired output, 1-1

PI, 1-8,2-4,2-9,4-2, B-1
piecewise linear, 1-4
Planes

and coordinates, 4-1, 4-2
changing via MOVE, 4-5

plot
last curve again, GRAPH
new curve over last, OGRAPH
screen size, see XSIZE

plus signs, 2-2, 2-8,2-9
in graphs, 1-7, 6-3

POLE, 3-5,4-2 to 4-4,7-1, B-4
pole

coordinates, 4-1
creation or destruction via MOVE, 4-4
definition, 1-1,4-2
duplication, 4-4
error, 7-2, 7-3
location, 1-1
maximum number of, 4-2
moving, 4-4
numbering, 4-3
of transfer characteristic, H-l
real, 4-3
removing, 4-3

practical consideration, H-ll

precision,
extended, H-12, J-3
single, 2-7

precedence of operators, 2-8, 2-9
primaries, 2-8 to 2-10, 7-1, E-6
printer, Preface-i, 1-4, 8-2
prompt character

ISIS-II, 8-1
SPAC20,1-2

SP AC20 Compiler

within macros or compound commands,
9-1

propagation, 1-3, 1-4,7-1, Appendix J
of carry, H-12

PUT, 1-3, 1-12,2-6,7-3,8-5,8-6,9-1, B-3
default objects, 8-4

PZ, 1-6,4-3,4-4, B-4

quadratic terms, H-l
correspond to complex conjugate pole

pairs, H-2
question mark, 2-2
quote, 2-2, 2-3, 9-4, 9-5

radians, 2-9, 4-1, 4-2,5-3
RADIUS, 2-9, B-1

non-negative only, 4-2
range

of frequencies or time, see scales
of polelzeros, see partition

read-only, 2-4, 2-5, 3-2, 5-2
REAL 2-9, B-1
real polelzero

defined, 4-3
input/ output signal delays, J-2
permit "real" components, H-l
realization diagram, H-4

redisplay, 1-4,6-3
relational

expressions 9-8, 9-9
symbols 2-2,2-3,9-8

remainder, see MOD
REMOVE command, B-3, E-7

complete form, E-7
for macros, 9-7, E-ll
for poles/zeros, Preface-v, 1-3,4-3
for symbols 3-4
message. 4-3
see also simple sample session, 1-5ff

removing objects
summary chart, E-l

RENAME, F-l
REPEAT, 9-8, B-3, E-I0
resolution, 6-2, 6-3
restart of session, 1-5, 2-6
Retrieving

files of code or parametes, see
INCLUDE

review of analog filters, Appendix H

S, H-l
S & H, sample-and-hold
sampled

filters, 1-11, H-5, H-7
polelzero, 2-6, 4-1
signals, H-3

SP AC20 Compiler

sampling
interval TS, 1-3,2-5,6-1, H-8
limitations, H-5
rate, 1-3, I-II, 4-1,5-4, H-12, H-14,

saturation. H-Il
shown by asterisk, 6-2

saving partial results. 1-3, 1-4
sawtooth waveform macro

definition. 11-2
invocation, 11-7

scalar keywords, 2-4. 2-5
Scales, 5-1, 6-1

changes, 6-3
frequency, 6-1
time, 6-1
vertical, 6-2

scaling, 1-3, 1-4,5-2,5-4,7-1
and other considerations, H -11,

Appendix J.
screen

size, 6-1 ff
second-order (quadratic), H-l, H-2,

H-5, see also stages
semicolon, 2-2,3-1, F-l
separator, 3-1
sequence of use, 1-3
set commands, 3-2, E-6
show contents of a file, see DISPLA Y
signal propagation, Appendix J
sign-on messages, 8-1, F-l
simple sample session, 1-5 to 1-20
Simulator, 1-2, G-I
SIN, 2-9, B-1
single precision, 2-7
sinusoid waveform

in complex network analysis, H-l,
H-4, H-5

macros
at user-specified frequency

definition, 11-4
invocation, 11-9

from triangular waveform
definition, 11-4
invocation, 11-8

slash. 2-2, 2-8, 2-9
software installation, Appendix F
SPAC20 files, F-l
space, 2-2, 2-6, 3-1
special-character usage, 2-2

sequences as tokens, 2-3
S-plane, I-I, 1-3,2-9,4-1, H-6
SQR, 2-9, B-1
stages, 1-3,5-4,7-1, J-l

first and second order cascaded, 1-4,
H-2, H-14, H-15

in parallel, H-16
STEP, 2-6, 5-1, 5-4, B-4
strings, 2-2, 2-3, 8-3, 8-4,9-4
submission

of code to Assembler, 1-5,
Appendix G

of command to Compiler, 3-1
SUBMIT, 3-1, 8-6
suffix see constant, Preface-v, 2-7
superimpose graphs, 1-4, 6-3

symbolic
constants, 1-3
names, 1-4,2-3,2-6,7-1
references, 2-6, 2-11, 3-2, E-4
variables, 1-4, 2-6

SYMBOLS, 3-4, 8-4, B-4
symbol table, 2-6, 3-3
symmetry of command syntax,

Preface-iv
syntax

charts, Preface-v, Appendix E
checking in macros, 9-7
description in BNF, Appendix 0
errors, 9-1, 9-13, K-l

system constant, E-3

tables
macros, 9-2
poleizero, 4-1
symbols, 2-6, 3-3

TAN, B-1
temporary RAM used in coding equations,

Appendix J
terminating

a command, 3-1
a line, 3-2
a macro, 9-2, 9-4, 9-8
an interactive session, 8-2

THEN, 9-11, B-5
THROUGH, 2-10,4-3, B-5
time

response, 5-4, 6-1, E-4
scale, 6-1, 6-2

TO, 4-4, 4-5, B-5
Token, 2-1, 2-3, 3-1

partial, 9-3
predefined, 2-4

TPI, 3-4, B-2
transfer

function, 1-1
factors, 1-1

characteristic, H-l
transforms, Preface-v, Appendix H

Bilinear, 10-6, H-7 to H-9
impulse invariant, H-5, H-6
matched-Z, H-6

triangular waveform macro
definition, 11-3
invocation, 11-8

TRUE, 9-9, 9-11
TS, 1-3, 1-11,2-1,2-2,2-5,2-6,4-1,4-4,

5-1, 5-4,6-1, 6-2, B-4, H-14
consequences, 4-1

UBOUND, 3-3,5-1 to 5-3, B-4
underflow, C-l, H-l1
underline, 2-2
upper and lower bounds, 5-2
unit delay, H-9

realization in 2920, H-lO
UNTIL, 9-8 to 9-10, B-5, E-lO

Index

Index-7

Index

Index-8

Up
impulse, 5-4
step, 5-4

user names, 2-2, 2-6, 3-2
utility commands, 0-4

variable
independent, computing of, 1-4
names, 1-4,2-6,7-1

WHILE, 9-8 to 9-10, B-5, E-lO
WRITE, 8-3, B-3
write over a file, see PUT

XOR, 9-9, B-2
XSIZE, 2-5, 3-3, 5-1,5-4,6-1 to 6-3,8-4,

B-4

YSCALE, 1-8, 6-2, 8-4, B-4, C-l
YSIZE, 2-5, 3-3, 6-2, 6-3, 8-4, B-4

Z, 4-2, 4-4, B-5
ZERO, 3-5,4-2 to 4-4, 7-1, B-4
zero

coordinates, 4-1

SP AC20 Compiler

creation or destruction via MOVE, 4-4
definition, 1-1, 4-2
duplication, 4-4
error, 7-2, 7-3
location, 1-1
maximum number of, 4-2
moving, 4-.:1
numbering, 4-3
of transfer characteristic, H-l
real,4-3
realization, H-2
removing, 4-3

Z plane, 1-1, 1-3,2-6,2-9,4-1, H-6

infel® 2920 Signal Processing Applications
Compiler User's Guide

121529-001

REQUEST FOR READER'S COMMENTS

The Microcomputer Division Technical Publications Department attempts to provide documents that meet
the needs of all Intel product users. This form lets you participate directly in the documentation process.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of
this document.

1. Please specify by page any errors you found in this manual.

2. Does the document cover the information you expected or required? Please make suggestions for
improvement.

3. Is this the right type of document for your needs? Is it at the right level? What other types of
documents are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating.

NAME __ __ DATE __________________ __

TITLE __ _

COMPANYNAME/DEPARTMENT __ __
ADDRESS __ ___

CITY _________________________ __ STATE ___________ _ ZIP CODE ______________ _

Please check here if you require a written reply. 0

WE'D LIKE YOUR COMMENTS ...

This document is one of a series describing Intel products. Your comments on the back of this form will
help us produce better manuals. Each reply will be carefully reviewed by the responsible person. All
comments and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 1040 SANTA CLARA, CA

POSTAGE WILL BE PAID BY ADDRESSEE

I ntel Corporation
Attn: Technical Publications MIS 6-2000
3065 Bowers Avenue
Santa Clara, CA 95051

NO POSTAGE
NECESSARY

IF MAILED
IN U.S.A.

inter
INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, CA 95051 (408) 987-8080

Printed in U_S_A_

